Vasopressin activates a chloride conductance in cultured cortical collecting duct cells. 1994

E Nagy, and A Náray-Fejes-Tóth, and G Fejes-Tóth
Department of Physiology, Dartmouth Medical School, Lebanon, New Hampshire 03756.

In rabbit cortical collecting duct (CCD) cells, arginine vasopressin (AVP) causes a transient increase followed by a sustained depression of transepithelial potential difference (PDte). Mechanisms underlying the decrease in PDte are not well understood. In this study, we used primary cultures of rabbit CCD cells to study effects of AVP. Basolateral addition of AVP caused a dose-dependent increase in transepithelial conductance (Gte) and a corresponding decrease in PDte. A significant effect was observed at 1 pM AVP, and half-maximal response occurred at 30 pM AVP; 1 nM AVP increased Gte and decreased PDte. Replacement of apical Na+ with N-methyl-D-glucamine did not prevent the effect of AVP on Gte, suggesting that it is not mediated by an increase in apical Na+ conductance. Similarly, apical Ba2+ (1 mM) or 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS, 0.1 mM) failed to prevent the effect of AVP. On the other hand, 5-nitro-2(3-phenylpropylamino)benzoic acid (0.1 mM) caused partial inhibition, whereas substitution of apical Cl- with gluconate or cyclamate almost completely prevented the AVP-induced increase in Gte. In unidirectional ion-flux studies, 1 nM AVP caused only a modest increase in apical-to-basolateral (A-->BL) flux of 22Na and had no effect on transepithelial flux of 86Rb in either direction. On the other hand, AVP caused a pronounced increase in A-->BL flux and BL-->A flux of 36Cl, resulting in an increased net Cl- absorption. The effect of AVP on Gte could be mimicked by 8-bromo-adenosine 3',5'-cyclic monophosphate (8-bromo-cAMP) and isoproterenol, and effects of AVP and isoproterenol were not additive.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007545 Isoproterenol Isopropyl analog of EPINEPHRINE; beta-sympathomimetic that acts on the heart, bronchi, skeletal muscle, alimentary tract, etc. It is used mainly as bronchodilator and heart stimulant. Isoprenaline,Isopropylarterenol,4-(1-Hydroxy-2-((1-methylethyl)amino)ethyl)-1,2-benzenediol,Euspiran,Isadrin,Isadrine,Isopropyl Noradrenaline,Isopropylnoradrenaline,Isopropylnorepinephrine,Isoproterenol Hydrochloride,Isoproterenol Sulfate,Isuprel,Izadrin,Norisodrine,Novodrin,Hydrochloride, Isoproterenol,Noradrenaline, Isopropyl,Sulfate, Isoproterenol
D007672 Kidney Cortex The outer zone of the KIDNEY, beneath the capsule, consisting of KIDNEY GLOMERULUS; KIDNEY TUBULES, DISTAL; and KIDNEY TUBULES, PROXIMAL. Cortex, Kidney
D007685 Kidney Tubules, Collecting Straight tubes commencing in the radiate part of the kidney cortex where they receive the curved ends of the distal convoluted tubules. In the medulla the collecting tubules of each pyramid converge to join a central tube (duct of Bellini) which opens on the summit of the papilla. Kidney Collecting Ducts,Kidney Collecting Duct,Collecting Duct, Kidney,Collecting Ducts, Kidney
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008536 Meglumine 1-Deoxy-1-(methylamino)-D-glucitol. A derivative of sorbitol in which the hydroxyl group in position 1 is replaced by a methylamino group. Often used in conjunction with iodinated organic compounds as contrast medium. Methylglucamine
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response

Related Publications

E Nagy, and A Náray-Fejes-Tóth, and G Fejes-Tóth
November 1999, FEBS letters,
E Nagy, and A Náray-Fejes-Tóth, and G Fejes-Tóth
July 1995, The Journal of clinical investigation,
E Nagy, and A Náray-Fejes-Tóth, and G Fejes-Tóth
July 1998, The Journal of membrane biology,
E Nagy, and A Náray-Fejes-Tóth, and G Fejes-Tóth
January 2006, The Journal of membrane biology,
E Nagy, and A Náray-Fejes-Tóth, and G Fejes-Tóth
January 2014, General physiology and biophysics,
E Nagy, and A Náray-Fejes-Tóth, and G Fejes-Tóth
August 1995, Proceedings of the National Academy of Sciences of the United States of America,
E Nagy, and A Náray-Fejes-Tóth, and G Fejes-Tóth
September 1996, The Journal of general physiology,
E Nagy, and A Náray-Fejes-Tóth, and G Fejes-Tóth
November 1989, The American journal of physiology,
E Nagy, and A Náray-Fejes-Tóth, and G Fejes-Tóth
February 1990, The American journal of physiology,
E Nagy, and A Náray-Fejes-Tóth, and G Fejes-Tóth
September 1991, Klinische Wochenschrift,
Copied contents to your clipboard!