Differential control of ventilation among inbred strains of mice. 1994

C G Tankersley, and R S Fitzgerald, and S R Kleeberger
Johns Hopkins University School of Hygiene and Public Health, Baltimore, Maryland 21205.

The role genetic factors play in ventilatory control was examined by challenging eight inbred strains of mice to acute hypercapnia under normoxic and hypoxic conditions. Age-matched mice were exposed for 3-5 min to inspired gases of the following composition (FICO2:FIO2) 0.03:0.10, 2) 0.03:0.21, 3) 0.08:0.10, and 4) 0.08:0.21, with intermittent room air exposures. Breathing frequency (f) and tidal volume (VT) of unanesthetized, unrestrained mice were assessed by whole body plethysmography. During room air breathing, significant (P < 0.01) interstrain differences were noted in the pattern, but minute ventilation (VE) did not differ among the strains. Relative to room air, mild hypercapnia with hypoxia (0.03:0.10) significantly (P < 0.01) elevated VE in each strain, and the percent increase in VE of the DBA/2J strain was significantly (P < 0.05) greater than the other strains. The ventilatory response to these conditions was achieved primarily by a significant (P < 0.01) increase in f among the strains. During severely hypercapnic normoxia (0.08:0.21) and hypoxia (0.08:0.10), the increase in VE was significantly (P < 0.01) greatest in the C57BL/6J (B6) mice and least in the C3H/HeJ (C3) mice. The difference in hypercapnic VE between B6 and C3 strains was largely due to a significantly (P < 0.01) greater increase in VT by B6 mice. On the assumption that environmental factors were identical, these data suggest that genetic determinants govern interstrain variation in the magnitude and pattern of breathing during hypoxia and hypercapnia. Moreover, hypoxic and hypercapnic ventilatory responses appear to be influenced by different genetic mechanisms.

UI MeSH Term Description Entries
D008297 Male Males
D008815 Mice, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations, or by parent x offspring matings carried out with certain restrictions. All animals within an inbred strain trace back to a common ancestor in the twentieth generation. Inbred Mouse Strains,Inbred Strain of Mice,Inbred Strain of Mouse,Inbred Strains of Mice,Mouse, Inbred Strain,Inbred Mouse Strain,Mouse Inbred Strain,Mouse Inbred Strains,Mouse Strain, Inbred,Mouse Strains, Inbred,Strain, Inbred Mouse,Strains, Inbred Mouse
D012016 Reference Values The range or frequency distribution of a measurement in a population (of organisms, organs or things) that has not been selected for the presence of disease or abnormality. Normal Range,Normal Values,Reference Ranges,Normal Ranges,Normal Value,Range, Normal,Range, Reference,Ranges, Normal,Ranges, Reference,Reference Range,Reference Value,Value, Normal,Value, Reference,Values, Normal,Values, Reference
D012119 Respiration The act of breathing with the LUNGS, consisting of INHALATION, or the taking into the lungs of the ambient air, and of EXHALATION, or the expelling of the modified air which contains more CARBON DIOXIDE than the air taken in (Blakiston's Gould Medical Dictionary, 4th ed.). This does not include tissue respiration ( Breathing
D002245 Carbon Dioxide A colorless, odorless gas that can be formed by the body and is necessary for the respiration cycle of plants and animals. Carbonic Anhydride,Anhydride, Carbonic,Dioxide, Carbon
D006935 Hypercapnia A clinical manifestation of abnormal increase in the amount of carbon dioxide in arterial blood.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000860 Hypoxia Sub-optimal OXYGEN levels in the ambient air of living organisms. Anoxia,Oxygen Deficiency,Anoxemia,Deficiency, Oxygen,Hypoxemia,Deficiencies, Oxygen,Oxygen Deficiencies
D001239 Inhalation The act of BREATHING in. Inhaling,Inspiration, Respiratory,Respiratory Inspiration
D013045 Species Specificity The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species. Species Specificities,Specificities, Species,Specificity, Species

Related Publications

C G Tankersley, and R S Fitzgerald, and S R Kleeberger
January 1986, Physiology & behavior,
C G Tankersley, and R S Fitzgerald, and S R Kleeberger
June 2015, eLife,
C G Tankersley, and R S Fitzgerald, and S R Kleeberger
October 1983, Teratology,
C G Tankersley, and R S Fitzgerald, and S R Kleeberger
February 1964, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
C G Tankersley, and R S Fitzgerald, and S R Kleeberger
January 1997, Growth, development, and aging : GDA,
C G Tankersley, and R S Fitzgerald, and S R Kleeberger
March 2010, Respiratory physiology & neurobiology,
C G Tankersley, and R S Fitzgerald, and S R Kleeberger
October 1985, Atherosclerosis,
C G Tankersley, and R S Fitzgerald, and S R Kleeberger
December 1958, Science (New York, N.Y.),
C G Tankersley, and R S Fitzgerald, and S R Kleeberger
January 2019, Frontiers in genetics,
Copied contents to your clipboard!