The arachidonic acid cascade, eicosanoids, and signal transduction. 1994

U Janssen-Timmen, and I Tomiç, and E Specht, and U Beilecke, and A J Habenicht
Department of Medicine, University of Heidelberg, Germany.

Eicosanoid biosynthesis in animal cells either results from agonist-stimulated phospholipase activation (endogenous pathway) or from lipoprotein receptor-mediated uptake and lysosomal lipid hydrolase-dependent release of AA (exogenous pathway) (see Fig. 1 for schematic representation). LDL stimulates eicosanoid formation through delivery of substrate AA to enzymes of oxidative AA metabolism. The classical LDL receptor is a control point of the effects of LDL AA on eicosanoid formation in different tissues: LDL AA metabolism occurs in several cell types of mesenchymal and epithelial origin and generates the formation of distinct eicosanoid patterns in each case. The LDL AA pathway does appear to couple directly to the PGH synthase reaction, whereas it does not couple directly to the 5-lipoxygenase reaction. We expect that a more complete characterization of the LDL unsaturated fatty acid pathway in different tissue will yield additional information on the biochemistry of lipoproteins, AA, and eicosanoids.

UI MeSH Term Description Entries
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D010740 Phospholipases A class of enzymes that catalyze the hydrolysis of phosphoglycerides or glycerophosphatidates. EC 3.1.-. Lecithinases,Lecithinase,Phospholipase
D011973 Receptors, LDL Receptors on the plasma membrane of nonhepatic cells that specifically bind LDL. The receptors are localized in specialized regions called coated pits. Hypercholesteremia is caused by an allelic genetic defect of three types: 1, receptors do not bind to LDL; 2, there is reduced binding of LDL; and 3, there is normal binding but no internalization of LDL. In consequence, entry of cholesterol esters into the cell is impaired and the intracellular feedback by cholesterol on 3-hydroxy-3-methylglutaryl CoA reductase is lacking. LDL Receptors,Lipoprotein LDL Receptors,Receptors, Low Density Lipoprotein,LDL Receptor,LDL Receptors, Lipoprotein,Low Density Lipoprotein Receptor,Low Density Lipoprotein Receptors,Receptors, Lipoprotein, LDL,Receptor, LDL,Receptors, Lipoprotein LDL
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001095 Arachidonic Acids Eicosatetraenoic Acids,Acids, Arachidonic,Acids, Eicosatetraenoic
D015290 Second Messenger Systems Systems in which an intracellular signal is generated in response to an intercellular primary messenger such as a hormone or neurotransmitter. They are intermediate signals in cellular processes such as metabolism, secretion, contraction, phototransduction, and cell growth. Examples of second messenger systems are the adenyl cyclase-cyclic AMP system, the phosphatidylinositol diphosphate-inositol triphosphate system, and the cyclic GMP system. Intracellular Second Messengers,Second Messengers,Intracellular Second Messenger,Messenger, Second,Messengers, Intracellular Second,Messengers, Second,Second Messenger,Second Messenger System,Second Messenger, Intracellular,Second Messengers, Intracellular,System, Second Messenger,Systems, Second Messenger
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D015777 Eicosanoids A class of compounds named after and generally derived from C20 fatty acids (EICOSANOIC ACIDS) that includes PROSTAGLANDINS; LEUKOTRIENES; THROMBOXANES, and HYDROXYEICOSATETRAENOIC ACIDS. They have hormone-like effects mediated by specialized receptors (RECEPTORS, EICOSANOID). Eicosanoid,Icosanoid,Icosanoids

Related Publications

U Janssen-Timmen, and I Tomiç, and E Specht, and U Beilecke, and A J Habenicht
July 1990, Journal of neurochemistry,
U Janssen-Timmen, and I Tomiç, and E Specht, and U Beilecke, and A J Habenicht
January 1986, Ciba Foundation symposium,
U Janssen-Timmen, and I Tomiç, and E Specht, and U Beilecke, and A J Habenicht
January 2001, Advances in experimental medicine and biology,
U Janssen-Timmen, and I Tomiç, and E Specht, and U Beilecke, and A J Habenicht
January 1992, The Tohoku journal of experimental medicine,
U Janssen-Timmen, and I Tomiç, and E Specht, and U Beilecke, and A J Habenicht
September 2010, Journal of orthopaedic trauma,
U Janssen-Timmen, and I Tomiç, and E Specht, and U Beilecke, and A J Habenicht
January 1995, Vestnik Rossiiskoi akademii meditsinskikh nauk,
U Janssen-Timmen, and I Tomiç, and E Specht, and U Beilecke, and A J Habenicht
April 2011, World journal of biological chemistry,
U Janssen-Timmen, and I Tomiç, and E Specht, and U Beilecke, and A J Habenicht
September 1991, Molecular and cellular endocrinology,
U Janssen-Timmen, and I Tomiç, and E Specht, and U Beilecke, and A J Habenicht
January 1991, Science (New York, N.Y.),
U Janssen-Timmen, and I Tomiç, and E Specht, and U Beilecke, and A J Habenicht
January 1994, EXS,
Copied contents to your clipboard!