Susceptibilities of zidovudine-resistant variants of human immunodeficiency virus type 1 to inhibition by acyclic nucleoside phosphonates. 1994

Y F Gong, and D R Marshall, and R V Srinivas, and A Fridland
Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38101.

The acyclic purine nucleoside phosphonates, a newly described class of broad-spectrum antiviral agents, effectively inhibit human immunodeficiency virus type 1 (HIV-1) replication in vitro and in animal AIDS models. 9-(2-Phosphonylmethoxyethyl)adenine (PMEA) is currently being evaluated in clinical trials in patients with AIDS. In this study, we investigated the efficacy of PMEA and a related analog, 9-(2-phosphonylmethoxypropyl)diaminopurine (PMPDAP), against HIV-1 isolates exhibiting various degrees of resistance to zidovudine (azidothymidine [AZT]). HIV isolates highly (approximately 50 to 200-fold) resistant to AZT were found to be about two- to eightfold less susceptible to PMEA. A comparable degree of cross-resistance to PMPDAP, a structurally related analog of PMEA, was also observed. However, the 50% effective dose values of PMEA or PMPDAP against a panel of HIV isolates showing intermediate levels (approximately 8 to 25-fold) of AZT resistance was indistinguishable from the 50% effective dose values of PMEA (0.7 to 1.7 versus 2 microM) or PMPDAP (0.4 to 1.4 versus 0.8 to 1 microM) against HIV isolates from patients who had not previously used AZT. In addition, we were unable to generate PMEA- (or PMPDAP)-resistant HIV-1 variants by > 30 serial passages of the virus in the presence of increasing concentrations of PMEA. Careful analysis of HIV-1 isolates from patients previously treated with AZT for cross-resistance to PMEA are needed to evaluate the significance of these observations.

UI MeSH Term Description Entries
D009943 Organophosphorus Compounds Organic compounds that contain phosphorus as an integral part of the molecule. Included under this heading is broad array of synthetic compounds that are used as PESTICIDES and DRUGS. Organophosphorus Compound,Organopyrophosphorus Compound,Organopyrophosphorus Compounds,Compound, Organophosphorus,Compound, Organopyrophosphorus,Compounds, Organophosphorus,Compounds, Organopyrophosphorus
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004352 Drug Resistance, Microbial The ability of microorganisms, especially bacteria, to resist or to become tolerant to chemotherapeutic agents, antimicrobial agents, or antibiotics. This resistance may be acquired through gene mutation or foreign DNA in transmissible plasmids (R FACTORS). Antibiotic Resistance,Antibiotic Resistance, Microbial,Antimicrobial Resistance, Drug,Antimicrobial Drug Resistance,Antimicrobial Drug Resistances,Antimicrobial Resistances, Drug,Drug Antimicrobial Resistance,Drug Antimicrobial Resistances,Drug Resistances, Microbial,Resistance, Antibiotic,Resistance, Drug Antimicrobial,Resistances, Drug Antimicrobial
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000225 Adenine A purine base and a fundamental unit of ADENINE NUCLEOTIDES. Vitamin B 4,4, Vitamin B,B 4, Vitamin
D000998 Antiviral Agents Agents used in the prophylaxis or therapy of VIRUS DISEASES. Some of the ways they may act include preventing viral replication by inhibiting viral DNA polymerase; binding to specific cell-surface receptors and inhibiting viral penetration or uncoating; inhibiting viral protein synthesis; or blocking late stages of virus assembly. Antiviral,Antiviral Agent,Antiviral Drug,Antivirals,Antiviral Drugs,Agent, Antiviral,Agents, Antiviral,Drug, Antiviral,Drugs, Antiviral
D013601 T-Lymphocytes Lymphocytes responsible for cell-mediated immunity. Two types have been identified - cytotoxic (T-LYMPHOCYTES, CYTOTOXIC) and helper T-lymphocytes (T-LYMPHOCYTES, HELPER-INDUCER). They are formed when lymphocytes circulate through the THYMUS GLAND and differentiate to thymocytes. When exposed to an antigen, they divide rapidly and produce large numbers of new T cells sensitized to that antigen. T Cell,T Lymphocyte,T-Cells,Thymus-Dependent Lymphocytes,Cell, T,Cells, T,Lymphocyte, T,Lymphocyte, Thymus-Dependent,Lymphocytes, T,Lymphocytes, Thymus-Dependent,T Cells,T Lymphocytes,T-Cell,T-Lymphocyte,Thymus Dependent Lymphocytes,Thymus-Dependent Lymphocyte
D015215 Zidovudine A dideoxynucleoside compound in which the 3'-hydroxy group on the sugar moiety has been replaced by an azido group. This modification prevents the formation of phosphodiester linkages which are needed for the completion of nucleic acid chains. The compound is a potent inhibitor of HIV replication, acting as a chain-terminator of viral DNA during reverse transcription. It improves immunologic function, partially reverses the HIV-induced neurological dysfunction, and improves certain other clinical abnormalities associated with AIDS. Its principal toxic effect is dose-dependent suppression of bone marrow, resulting in anemia and leukopenia. AZT (Antiviral),Azidothymidine,3'-Azido-2',3'-Dideoxythymidine,3'-Azido-3'-deoxythymidine,AZT Antiviral,AZT, Antiviral,BW A509U,BWA-509U,Retrovir,3' Azido 2',3' Dideoxythymidine,3' Azido 3' deoxythymidine,Antiviral AZT,BWA 509U,BWA509U
D015394 Molecular Structure The location of the atoms, groups or ions relative to one another in a molecule, as well as the number, type and location of covalent bonds. Structure, Molecular,Molecular Structures,Structures, Molecular
D015497 HIV-1 The type species of LENTIVIRUS and the etiologic agent of AIDS. It is characterized by its cytopathic effect and affinity for the T4-lymphocyte. Human immunodeficiency virus 1,HIV-I,Human Immunodeficiency Virus Type 1,Immunodeficiency Virus Type 1, Human

Related Publications

Y F Gong, and D R Marshall, and R V Srinivas, and A Fridland
March 1994, The Journal of infectious diseases,
Y F Gong, and D R Marshall, and R V Srinivas, and A Fridland
September 2005, Biochemical pharmacology,
Y F Gong, and D R Marshall, and R V Srinivas, and A Fridland
January 1992, Current topics in microbiology and immunology,
Y F Gong, and D R Marshall, and R V Srinivas, and A Fridland
May 1990, The American journal of medicine,
Y F Gong, and D R Marshall, and R V Srinivas, and A Fridland
August 2001, AIDS research and human retroviruses,
Y F Gong, and D R Marshall, and R V Srinivas, and A Fridland
February 1994, The Journal of infectious diseases,
Y F Gong, and D R Marshall, and R V Srinivas, and A Fridland
April 1993, The New England journal of medicine,
Y F Gong, and D R Marshall, and R V Srinivas, and A Fridland
July 2008, Journal of virology,
Y F Gong, and D R Marshall, and R V Srinivas, and A Fridland
August 1997, The Journal of infectious diseases,
Y F Gong, and D R Marshall, and R V Srinivas, and A Fridland
July 2007, Antimicrobial agents and chemotherapy,
Copied contents to your clipboard!