Flavin substrate specificity of the vitamin B2-aldehyde-forming enzyme from Schizophyllum commune. 1994

T N Kekelidze, and D E Edmondson, and D B McCormick
Department of Biochemistry, Emory University, Atlanta, Georgia 30322-3050.

Vitamin B2-aldehyde-forming enzyme from Schizophyllum commune catalyzes oxidation of the 5'-hydroxymethyl of riboflavin to the formyl group. We have monitored enzyme activity by spectrophotometrically measuring the reduction of 2,6-dichlorophenol-indolphenol as electron acceptor to assess 35 riboflavin analogs as potential substrates or competitive inhibitors with the purpose of delimiting structural requirements of the substrate binding site. Analogs with side chains of two- to six-carbon length modified by deletion of secondary hydroxyls or by changes in their epimeric configuration are not oxidized. The omega-hydroxyalkyl-flavins (n = 2-6) are competitive inhibitors (Ki = 7-16 microM) of riboflavin oxidation, as are some analogs with L-secondary hydroxyls in the side chain. Analogs with bulky substituents on the isoalloxazine ring are also not substrates. The enzyme does not significantly bind flavins with an 8 alpha-N-imidazole; diethylamino, methylethylamino, dimethylamino, ethylamino, or ethoxy groups at position 8; methyl at 6; and beta-hydroxyethylamino at position 2. Also the replacement of N with CH in 1-deazariboflavin disallows substrate reaction. Analogs with fluoro, chloro, methyl, amino, or methylamino at position 8; chloro at 7; methyl or carboxylmethyl at 3; thio at 2, and C replacing N at positions 3 or 5 are substrates with relative Vmax values ranging from 27 to 110% that of riboflavin. The Km values for the analogs oxidized are all found to be in the micromolar range (22-176 microM). Overall specificity of the enzyme for riboflavin is found to be rather narrow and sterically limited, which suggests that the vitamin is the natural substrate.

UI MeSH Term Description Entries
D007553 Isotope Labeling Techniques for labeling a substance with a stable or radioactive isotope. It is not used for articles involving labeled substances unless the methods of labeling are substantively discussed. Tracers that may be labeled include chemical substances, cells, or microorganisms. Isotope Labeling, Stable,Isotope-Coded Affinity Tagging,Isotopically-Coded Affinity Tagging,Affinity Tagging, Isotope-Coded,Affinity Tagging, Isotopically-Coded,Isotope Coded Affinity Tagging,Labeling, Isotope,Labeling, Stable Isotope,Stable Isotope Labeling,Tagging, Isotope-Coded Affinity,Tagging, Isotopically-Coded Affinity
D005415 Flavins Derivatives of the dimethylisoalloxazine (7,8-dimethylbenzo[g]pteridine-2,4(3H,10H)-dione) skeleton. Flavin derivatives serve an electron transfer function as ENZYME COFACTORS in FLAVOPROTEINS.
D000429 Alcohol Oxidoreductases A subclass of enzymes which includes all dehydrogenases acting on primary and secondary alcohols as well as hemiacetals. They are further classified according to the acceptor which can be NAD+ or NADP+ (subclass 1.1.1), cytochrome (1.1.2), oxygen (1.1.3), quinone (1.1.5), or another acceptor (1.1.99). Carbonyl Reductase,Ketone Reductase,Carbonyl Reductases,Ketone Reductases,Oxidoreductases, Alcohol,Reductase, Carbonyl,Reductase, Ketone,Reductases, Carbonyl,Reductases, Ketone
D012256 Riboflavin Nutritional factor found in milk, eggs, malted barley, liver, kidney, heart, and leafy vegetables. The richest natural source is yeast. It occurs in the free form only in the retina of the eye, in whey, and in urine; its principal forms in tissues and cells are as FLAVIN MONONUCLEOTIDE and FLAVIN-ADENINE DINUCLEOTIDE. Vitamin B 2,Vitamin G,Vitamin B2
D012567 Schizophyllum A genus of fleshy shelf basidiomycetous fungi, family Schizophyllaceae, order AGARICALES, growing on woody substrata. It is pathogenic in humans. Schizophyllum commune,Schizophyllums
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities

Related Publications

T N Kekelidze, and D E Edmondson, and D B McCormick
July 1981, The Journal of biological chemistry,
T N Kekelidze, and D E Edmondson, and D B McCormick
January 1981, Journal of nutritional science and vitaminology,
T N Kekelidze, and D E Edmondson, and D B McCormick
January 1980, Journal of nutritional science and vitaminology,
T N Kekelidze, and D E Edmondson, and D B McCormick
January 1982, Journal of nutritional science and vitaminology,
T N Kekelidze, and D E Edmondson, and D B McCormick
December 1996, Biochimica et biophysica acta,
T N Kekelidze, and D E Edmondson, and D B McCormick
May 2015, Journal of natural products,
T N Kekelidze, and D E Edmondson, and D B McCormick
July 1969, Journal of bacteriology,
T N Kekelidze, and D E Edmondson, and D B McCormick
May 1979, Journal of biochemistry,
T N Kekelidze, and D E Edmondson, and D B McCormick
January 1978, Mycologia,
Copied contents to your clipboard!