Assimilatory nitrate reductase: reduction and inhibition by NADH/NAD+ analogs. 1994

A J Trimboli, and M J Barber
Department of Biochemistry and Molecular Biology, University of South Florida, College of Medicine, Tampa.

Assimilatory nitrate reductase from Chlorella vulgaris catalyzes the rate-limiting step, the conversion of nitrate to nitrite, in nitrate assimilation. Initial rate studies of nitrate reductase activity, performed under optimum conditions of constant ionic strength (mu = 0.2) and pH (8.0) and using NADH as reductant, indicated the absence of substrate inhibition at NADH concentrations below 300 microM and NO3- concentrations less than 3 mM. Chlorella nitrate reductase exhibited a marked preference for NADH (Vmax = 9.2 mumol NADH/min/nmol heme and Km = 2.3 microM) as the physiological electron donor but could also utilize alpha-NADH (Vmax = 5.6 mumol NADH/min/nmol heme and Km = 131 microM) and NADPH (Vmax = 0.6 mumol NADPH/min/nmol heme and Km = 910 microM) though with significantly decreased efficiency. Examination of various NADH-analogs indicated that reduced nicotinamide hypoxanthine dinucleotide (NHDH) was used most efficiently (Vmax = 9.3 mumol NHDH/min/nmol heme and Km = 7.9 microM), while reduced nicotinamide mononucleotide (NMNH) was utilized least efficiently (Vmax = 0.07 mumol NMNH/min/nmol heme and Km = 676 microM). Overall, modifications to the nicotinamide moiety or the addition of a phosphate group were observed to result in the most significant decreases in Vmax, indicating poor reducing substrates. Product inhibition studies indicated both NAD+ (Ki = 2.2 mM) and NADP+ (Ki = 10.5 mM) to be competitive inhibitors of Chlorella NR. A variety of NAD+ analogs were also determined to act as competitive inhibitors with varying degrees of efficiency. 3-Pyridinealdehyde adenine dinucleotide was the most efficient inhibitor (Ki = 0.74 mM) while nicotinamide was the least efficient (Ki = 18.1 mM). Overall, changing substituents on the nicotinamide ring or its complete deletion produced the most effective inhibitors compared to NAD+. In contrast, changes in the adenine or ribose moieties produced less effective inhibitors when compared to NAD+. These results represent the most comprehensive analysis of the effect of modifications of the physiological reductant (NADH) and product (NAD+) on nitrate reductase activity.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009243 NAD A coenzyme composed of ribosylnicotinamide 5'-diphosphate coupled to adenosine 5'-phosphate by pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). (Dorland, 27th ed) Coenzyme I,DPN,Diphosphopyridine Nucleotide,Nadide,Nicotinamide-Adenine Dinucleotide,Dihydronicotinamide Adenine Dinucleotide,NADH,Adenine Dinucleotide, Dihydronicotinamide,Dinucleotide, Dihydronicotinamide Adenine,Dinucleotide, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide,Nucleotide, Diphosphopyridine
D009249 NADP Nicotinamide adenine dinucleotide phosphate. A coenzyme composed of ribosylnicotinamide 5'-phosphate (NMN) coupled by pyrophosphate linkage to the 5'-phosphate adenosine 2',5'-bisphosphate. It serves as an electron carrier in a number of reactions, being alternately oxidized (NADP+) and reduced (NADPH). (Dorland, 27th ed) Coenzyme II,Nicotinamide-Adenine Dinucleotide Phosphate,Triphosphopyridine Nucleotide,NADPH,Dinucleotide Phosphate, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide Phosphate,Nucleotide, Triphosphopyridine,Phosphate, Nicotinamide-Adenine Dinucleotide
D009565 Nitrate Reductases Oxidoreductases that are specific for the reduction of NITRATES. Reductases, Nitrate
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D002708 Chlorella Nonmotile unicellular green algae potentially valuable as a source of high-grade protein and B-complex vitamins. Chlorellas
D001667 Binding, Competitive The interaction of two or more substrates or ligands with the same binding site. The displacement of one by the other is used in quantitative and selective affinity measurements. Competitive Binding
D013237 Stereoisomerism The phenomenon whereby compounds whose molecules have the same number and kind of atoms and the same atomic arrangement, but differ in their spatial relationships. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed) Molecular Stereochemistry,Stereoisomers,Stereochemistry, Molecular,Stereoisomer
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities

Related Publications

A J Trimboli, and M J Barber
July 1992, Proceedings of the National Academy of Sciences of the United States of America,
A J Trimboli, and M J Barber
May 2017, Extremophiles : life under extreme conditions,
A J Trimboli, and M J Barber
February 1996, Archives of biochemistry and biophysics,
A J Trimboli, and M J Barber
May 1980, European journal of biochemistry,
A J Trimboli, and M J Barber
April 1986, The Journal of biological chemistry,
A J Trimboli, and M J Barber
March 1977, Archives of microbiology,
A J Trimboli, and M J Barber
January 1981, Biochimica et biophysica acta,
A J Trimboli, and M J Barber
January 1977, Biochimica et biophysica acta,
A J Trimboli, and M J Barber
September 1977, Journal of bacteriology,
Copied contents to your clipboard!