Corticosteroid receptor antagonists are amnestic for passive avoidance learning in day-old chicks. 1994

C Sandi, and S P Rose
Brain and Behaviour Research Group, Open University, Milton Keynes, UK.

Glucocorticoids can modulate behavioural processes and neural plasticity. They are released during learning situations and can trigger neural actions through binding to brain receptors. We hypothesized that a glucocorticoid action could play a critical role in the mechanisms involved in long-term memory formation. In order to test this hypothesis, chicks were trained on a passive avoidance learning task and given bilateral intracerebral injections of selective mineralocorticoid (RU-28318) or glucocorticoid (RU-38486) receptor antagonists. The results showed that both antagonists alter information processing when injected prior to the training session. Possible state-dependent effects were discharged. Further experiments evaluating possible effects of the antagonists on concomitant aspects of the learning situation (such as novelty reaction and pecking pattern) indicated that, as opposed to the glucocorticoid receptor antagonist, the mineralocorticoid antagonist altered the birds' reactivity to non-specific aspects of the training task. These results suggest that the two types of intracellular corticosteroid receptors could be mediating different aspects of the information processing and storage involved in avoidance learning. In addition, this study points out that passive avoidance learning in the chick could be a good model to investigate the biochemical mechanisms involved in corticosteroid actions on learning-induced neural plasticity.

UI MeSH Term Description Entries
D007267 Injections Introduction of substances into the body using a needle and syringe. Injectables,Injectable,Injection
D008297 Male Males
D009473 Neuronal Plasticity The capacity of the NERVOUS SYSTEM to change its reactivity as the result of successive activations. Brain Plasticity,Plasticity, Neuronal,Axon Pruning,Axonal Pruning,Dendrite Arborization,Dendrite Pruning,Dendritic Arborization,Dendritic Pruning,Dendritic Remodeling,Neural Plasticity,Neurite Pruning,Neuronal Arborization,Neuronal Network Remodeling,Neuronal Pruning,Neuronal Remodeling,Neuroplasticity,Synaptic Plasticity,Synaptic Pruning,Arborization, Dendrite,Arborization, Dendritic,Arborization, Neuronal,Arborizations, Dendrite,Arborizations, Dendritic,Arborizations, Neuronal,Axon Prunings,Axonal Prunings,Brain Plasticities,Dendrite Arborizations,Dendrite Prunings,Dendritic Arborizations,Dendritic Prunings,Dendritic Remodelings,Network Remodeling, Neuronal,Network Remodelings, Neuronal,Neural Plasticities,Neurite Prunings,Neuronal Arborizations,Neuronal Network Remodelings,Neuronal Plasticities,Neuronal Prunings,Neuronal Remodelings,Neuroplasticities,Plasticities, Brain,Plasticities, Neural,Plasticities, Neuronal,Plasticities, Synaptic,Plasticity, Brain,Plasticity, Neural,Plasticity, Synaptic,Pruning, Axon,Pruning, Axonal,Pruning, Dendrite,Pruning, Dendritic,Pruning, Neurite,Pruning, Neuronal,Pruning, Synaptic,Prunings, Axon,Prunings, Axonal,Prunings, Dendrite,Prunings, Dendritic,Prunings, Neurite,Prunings, Neuronal,Prunings, Synaptic,Remodeling, Dendritic,Remodeling, Neuronal,Remodeling, Neuronal Network,Remodelings, Dendritic,Remodelings, Neuronal,Remodelings, Neuronal Network,Synaptic Plasticities,Synaptic Prunings
D011965 Receptors, Glucocorticoid Cytoplasmic proteins that specifically bind glucocorticoids and mediate their cellular effects. The glucocorticoid receptor-glucocorticoid complex acts in the nucleus to induce transcription of DNA. Glucocorticoids were named for their actions on blood glucose concentration, but they have equally important effects on protein and fat metabolism. Cortisol is the most important example. Corticoid Type II Receptor,Glucocorticoid Receptors,Glucocorticoids Receptor,Corticoid II Receptor,Corticoid Type II Receptors,Glucocorticoid Receptor,Receptors, Corticoid II,Receptors, Corticoid Type II,Receptors, Glucocorticoids,Corticoid II Receptors,Glucocorticoids Receptors,Receptor, Corticoid II,Receptor, Glucocorticoid,Receptor, Glucocorticoids
D011987 Receptors, Steroid Proteins found usually in the cytoplasm or nucleus that specifically bind steroid hormones and trigger changes influencing the behavior of cells. The steroid receptor-steroid hormone complex regulates the transcription of specific genes. Corticosteroid Receptors,Receptors, Corticosteroid,Steroid Receptors,Corticosteroid Receptor,Receptors, Steroids,Steroid Receptor,Receptor, Corticosteroid,Receptor, Steroid,Steroids Receptors
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002645 Chickens Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA. Gallus gallus,Gallus domesticus,Gallus gallus domesticus,Chicken
D005260 Female Females
D000451 Mineralocorticoid Receptor Antagonists Drugs that bind to and block the activation of MINERALOCORTICOID RECEPTORS by MINERALOCORTICOIDS such as ALDOSTERONE. Aldosterone Antagonist,Aldosterone Antagonists,Aldosterone Receptor Antagonist,Mineralocorticoid Antagonist,Mineralocorticoid Receptor Antagonist,Aldosterone Receptor Antagonists,Mineralocorticoid Antagonists,Antagonist, Aldosterone,Antagonist, Aldosterone Receptor,Antagonist, Mineralocorticoid,Antagonist, Mineralocorticoid Receptor,Antagonists, Aldosterone,Antagonists, Aldosterone Receptor,Antagonists, Mineralocorticoid,Antagonists, Mineralocorticoid Receptor,Receptor Antagonist, Aldosterone,Receptor Antagonist, Mineralocorticoid,Receptor Antagonists, Aldosterone,Receptor Antagonists, Mineralocorticoid
D000647 Amnesia Pathologic partial or complete loss of the ability to recall past experiences (AMNESIA, RETROGRADE) or to form new memories (AMNESIA, ANTEROGRADE). This condition may be of organic or psychologic origin. Organic forms of amnesia are usually associated with dysfunction of the DIENCEPHALON or HIPPOCAMPUS. (From Adams et al., Principles of Neurology, 6th ed, pp426-7) Amnesia, Dissociative,Amnesia, Global,Amnesia, Hysterical,Amnesia, Tactile,Amnesia, Temporary,Amnesia-Memory Loss,Amnestic State,Amnesia Memory Loss,Amnesia-Memory Losses,Amnesias,Amnesias, Dissociative,Amnesias, Global,Amnesias, Hysterical,Amnesias, Tactile,Amnesias, Temporary,Amnestic States,Dissociative Amnesia,Dissociative Amnesias,Global Amnesia,Global Amnesias,Hysterical Amnesia,Hysterical Amnesias,State, Amnestic,States, Amnestic,Tactile Amnesia,Tactile Amnesias,Temporary Amnesia,Temporary Amnesias

Related Publications

C Sandi, and S P Rose
January 1995, Brain research bulletin,
C Sandi, and S P Rose
December 1981, Physiology & behavior,
C Sandi, and S P Rose
October 2002, The European journal of neuroscience,
C Sandi, and S P Rose
April 1981, Behavioral and neural biology,
C Sandi, and S P Rose
March 2007, Behavioural brain research,
Copied contents to your clipboard!