Morphology and microtubule organization in Arabidopsis roots exposed to oryzalin or taxol. 1994

T I Baskin, and J E Wilson, and A Cork, and R E Williamson
Division of Biological Sciences, University of Missouri, Columbia 65211.

In roots of Arabidopsis thaliana, we examined the effects of low concentrations of microtubule inhibitors on the polarity of growth and on the organization of microtubule arrays. Intact 6 d old seedlings were transplanted onto plates containing inhibitors, and sampled 12 h, 24 h and 48 h later. Oryzalin, a compound that causes microtubule depolymerization, stimulates the radial expansion of roots. The amount of radial swelling is linearly proportional to the logarithm of the oryzalin concentration, from the response threshold, 170 nM, to 1 microM. Cells in the zone of division were slightly more sensitive to oryzalin than were cells in the zone of pure elongation. Radial swelling is also stimulated by taxol, a compound that causes microtubule polymerization. Taxol at 1 microM causes little swelling, but at 10 microM causes extensive radial swelling of cells in the elongation zone, and does not affect cells in the division zone. To examine the microtubules in these roots, we used methacrylate sections with immunofluorescence microscopy. At all concentrations of oryzalin, cortical arrays are disorganized and depleted of microtubules, and the microtubules themselves often appear fragmented. These effects increase in severity with concentration, but are unmistakable at 170 nM. In taxol, cortical arrays appear to be more intensely stained than those of controls. At 10 microM, many cells in growing regions of the stele have longitudinal microtubules, whereas many cells in the cortex appear to have transversely aligned microtubules. Taxol affects microtubules in cells of division and elongation zones to the same extent, despite the observed difference in growth.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D008856 Microscopy, Fluorescence Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye. Fluorescence Microscopy,Immunofluorescence Microscopy,Microscopy, Immunofluorescence,Fluorescence Microscopies,Immunofluorescence Microscopies,Microscopies, Fluorescence,Microscopies, Immunofluorescence
D008870 Microtubules Slender, cylindrical filaments found in the cytoskeleton of plant and animal cells. They are composed of the protein TUBULIN and are influenced by TUBULIN MODULATORS. Microtubule
D004136 Dinitrobenzenes Benzene derivatives which are substituted with two nitro groups in the ortho, meta or para positions. Dinitrobenzene,Dinitrophenyl Compound,Dinitrophenyl Compounds,Dinitrotoluene,Dinitrotoluenes,Compound, Dinitrophenyl
D006540 Herbicides Pesticides used to destroy unwanted vegetation, especially various types of weeds, grasses (POACEAE), and woody plants. Some plants develop HERBICIDE RESISTANCE. Algaecide,Algicide,Herbicide,Algaecides,Algicides
D013424 Sulfanilamides Compounds based on 4-aminobenzenesulfonamide. The '-anil-' part of the name refers to aniline. Sulphanilamides
D017239 Paclitaxel A cyclodecane isolated from the bark of the Pacific yew tree, TAXUS BREVIFOLIA. It stabilizes MICROTUBULES in their polymerized form leading to cell death. 7-epi-Taxol,Anzatax,Bris Taxol,NSC-125973,Onxol,Paclitaxel, (4 alpha)-Isomer,Paxene,Praxel,Taxol,Taxol A,7 epi Taxol,NSC 125973,NSC125973,Taxol, Bris
D017360 Arabidopsis A plant genus of the family BRASSICACEAE that contains ARABIDOPSIS PROTEINS and MADS DOMAIN PROTEINS. The species A. thaliana is used for experiments in classical plant genetics as well as molecular genetic studies in plant physiology, biochemistry, and development. Arabidopsis thaliana,Cress, Mouse-ear,A. thaliana,A. thalianas,Arabidopses,Arabidopsis thalianas,Cress, Mouse ear,Cresses, Mouse-ear,Mouse-ear Cress,Mouse-ear Cresses,thaliana, A.,thaliana, Arabidopsis,thalianas, A.

Related Publications

T I Baskin, and J E Wilson, and A Cork, and R E Williamson
September 2004, Plant & cell physiology,
T I Baskin, and J E Wilson, and A Cork, and R E Williamson
November 2020, Plant biology (Stuttgart, Germany),
T I Baskin, and J E Wilson, and A Cork, and R E Williamson
September 2019, Cell biology international,
T I Baskin, and J E Wilson, and A Cork, and R E Williamson
December 1993, Cell biology international,
T I Baskin, and J E Wilson, and A Cork, and R E Williamson
October 2019, International journal of molecular sciences,
T I Baskin, and J E Wilson, and A Cork, and R E Williamson
January 2009, TSitologiia i genetika,
T I Baskin, and J E Wilson, and A Cork, and R E Williamson
May 1985, European journal of cell biology,
T I Baskin, and J E Wilson, and A Cork, and R E Williamson
July 2006, Plant & cell physiology,
T I Baskin, and J E Wilson, and A Cork, and R E Williamson
January 1997, Development (Cambridge, England),
Copied contents to your clipboard!