Injections of excitatory amino acid antagonists into the median raphe nucleus produce hippocampal theta rhythm in the urethane-anesthetized rat. 1994

G G Kinney, and B Kocsis, and R P Vertes
Center for Complex Systems, Florida Atlantic University, Boca Raton, FL 33431.

The median raphe nucleus (MR) exerts a pronounced desynchronizing influence on the hippocampal EEG. MR stimulation disrupts theta, while MR lesions produce constant uninterrupted theta. The MR receives pronounced excitatory amino acid (EAA)-containing afferents that have been implicated in several MR-mediated behaviors. The present study examined the effects on the hippocampal EEG of MR injections of the following EAA antagonists in the urethane-anesthetized rat: 2-amino-7-phosphonoheptanoate (AP-7), dizocilpine maleate (MK-801), and gamma-glutamyl-aminomethylsulfonic acid (GAMS). MR injections of the competitive (AP-7) and non-competitive (MK-801) N-methyl-D-aspartic acid (NMDA) receptor antagonists produced theta at short latencies (2.86 min; 4.02 min, respectively) and for long durations (116.1 min; 66.8 min, respectively). It was further shown that the theta-eliciting effects of AP-7 injections could be reliably and temporarily reversed with MR injections of NMDA. MR injections of the kainate/quisqualate receptor antagonist (GAMS) also produced theta at relatively short latencies (6.5 min) and for long durations (60.5 min) indicating that EAA effects on the MR are not NMDA receptor specific. Injections of each of the foregoing EAA antagonists into regions of the brainstem adjacent to the MR including the dorsal raphe nucleus and the medullary or pontine reticular formation generated theta at very long latencies or were without effect. The present findings indicate EAA afferents to the MR normally exert an excitatory influence on the MR in its desynchronization of the hippocampal EEG, whereas the removal of EAA inputs to MR produces the opposite: a reduction of MR activity and hence the elicitation of theta.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007267 Injections Introduction of substances into the body using a needle and syringe. Injectables,Injectable,Injection
D007608 Kainic Acid (2S-(2 alpha,3 beta,4 beta))-2-Carboxy-4-(1-methylethenyl)-3-pyrrolidineacetic acid. Ascaricide obtained from the red alga Digenea simplex. It is a potent excitatory amino acid agonist at some types of excitatory amino acid receptors and has been used to discriminate among receptor types. Like many excitatory amino acid agonists it can cause neurotoxicity and has been used experimentally for that purpose. Digenic Acid,Kainate,Acid, Digenic,Acid, Kainic
D008297 Male Males
D011903 Raphe Nuclei Collections of small neurons centrally scattered among many fibers from the level of the TROCHLEAR NUCLEUS in the midbrain to the hypoglossal area in the MEDULLA OBLONGATA. Caudal Linear Nucleus of the Raphe,Interfascicular Nucleus,Nucleus Incertus,Rostral Linear Nucleus of Raphe,Rostral Linear Nucleus of the Raphe,Superior Central Nucleus,Central Nucleus, Superior,Incertus, Nucleus,Nuclei, Raphe,Nucleus, Interfascicular,Nucleus, Raphe,Nucleus, Superior Central,Raphe Nucleus
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino
D000758 Anesthesia A state characterized by loss of feeling or sensation. This depression of nerve function is usually the result of pharmacologic action and is induced to allow performance of surgery or other painful procedures.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000927 Anticonvulsants Drugs used to prevent SEIZURES or reduce their severity. Anticonvulsant,Anticonvulsant Drug,Anticonvulsive Agent,Anticonvulsive Drug,Antiepileptic,Antiepileptic Agent,Antiepileptic Agents,Antiepileptic Drug,Anticonvulsant Drugs,Anticonvulsive Agents,Anticonvulsive Drugs,Antiepileptic Drugs,Antiepileptics,Agent, Anticonvulsive,Agent, Antiepileptic,Agents, Anticonvulsive,Agents, Antiepileptic,Drug, Anticonvulsant,Drug, Anticonvulsive,Drug, Antiepileptic,Drugs, Anticonvulsant,Drugs, Anticonvulsive,Drugs, Antiepileptic
D001667 Binding, Competitive The interaction of two or more substrates or ligands with the same binding site. The displacement of one by the other is used in quantitative and selective affinity measurements. Competitive Binding

Related Publications

G G Kinney, and B Kocsis, and R P Vertes
June 1988, Pharmacology, biochemistry, and behavior,
G G Kinney, and B Kocsis, and R P Vertes
August 2002, Experimental brain research,
G G Kinney, and B Kocsis, and R P Vertes
October 1999, The Journal of pharmacology and experimental therapeutics,
G G Kinney, and B Kocsis, and R P Vertes
November 1996, Neuroreport,
G G Kinney, and B Kocsis, and R P Vertes
August 1980, Physiology & behavior,
G G Kinney, and B Kocsis, and R P Vertes
January 1986, Experimental brain research,
Copied contents to your clipboard!