Transfection of rat dermal papilla cells with a gene encoding a temperature-sensitive polyomavirus large T antigen generates cell lines retaining a differentiated phenotype. 1994

W Filsell, and J C Little, and A J Stones, and S P Granger, and S A Bayley
Department of Clinical Veterinary Medicine, University of Cambridge, UK.

The dermal papilla is a discrete group of cells at the base of the hair follicle and is implicated in controlling the hair growth cycle. Early passage dermal papilla cells can induce hair growth in vivo, but, upon further culturing, this property is lost. In order to study the events occurring in hair induction, a representative dermal papilla cell line was required. We have transfected passage 1 rat vibrissa dermal papilla cells with a polyomavirus large T gene encoding a temperature-sensitive T antigen, and generated permanent cell lines in which the immortalizing function can be switched off by temperature shift. The cells established without crisis, resembled cells in the starting population, and retained the aggregative properties of early passage dermal papilla cells. Growth studies were performed on the immortalized cell lines, which showed that transferring the cells to the restrictive temperature for the large T gene product resulted in cell senescence or quiescence, and changes in morphology. Implantation of cell pellets into the ears of immunologically compatible rats showed that the immortal cells retained hair-inductive ability. Cytokines are believed to have an important role in the control of hair growth. The pattern of cytokine gene expression in the immortal cell lines was compared with early passage dermal papilla cells and a non-hair-inducing dermal papilla cell line, using reverse transcriptase-polymerase chain reaction. Epidermal growth factor, tumour necrosis factor, and interleukin-1a were detected in the immortalized and non-hair-inducing dermal papilla cell lines, but were absent in passage 2 dermal papilla cells. All other cytokines examined were detected in all the cell types under study. These results demonstrate that the polyomavirus large Ttsa-immortalized dermal papilla cell lines are very similar to passage 2 dermal papilla cells and thus provide a good model for hair growth studies. Cytokine expression profiles indicate that the expression of several cytokines may be implicated in hair induction. Further studies are under way to investigate the relationship between cytokine expression and the hair growth cycle.

UI MeSH Term Description Entries
D007375 Interleukin-1 A soluble factor produced by MONOCYTES; MACROPHAGES, and other cells which activates T-lymphocytes and potentiates their response to mitogens or antigens. Interleukin-1 is a general term refers to either of the two distinct proteins, INTERLEUKIN-1ALPHA and INTERLEUKIN-1BETA. The biological effects of IL-1 include the ability to replace macrophage requirements for T-cell activation. IL-1,Lymphocyte-Activating Factor,Epidermal Cell Derived Thymocyte-Activating Factor,Interleukin I,Macrophage Cell Factor,T Helper Factor,Epidermal Cell Derived Thymocyte Activating Factor,Interleukin 1,Lymphocyte Activating Factor
D008297 Male Males
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002461 Cell Line, Transformed Eukaryotic cell line obtained in a quiescent or stationary phase which undergoes conversion to a state of unregulated growth in culture, resembling an in vitro tumor. It occurs spontaneously or through interaction with viruses, oncogenes, radiation, or drugs/chemicals. Transformed Cell Line,Cell Lines, Transformed,Transformed Cell Lines
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D005091 Exons The parts of a transcript of a split GENE remaining after the INTRONS are removed. They are spliced together to become a MESSENGER RNA or other functional RNA. Mini-Exon,Exon,Mini Exon,Mini-Exons
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein
D005822 Genetic Vectors DNA molecules capable of autonomous replication within a host cell and into which other DNA sequences can be inserted and thus amplified. Many are derived from PLASMIDS; BACTERIOPHAGES; or VIRUSES. They are used for transporting foreign genes into recipient cells. Genetic vectors possess a functional replicator site and contain GENETIC MARKERS to facilitate their selective recognition. Cloning Vectors,Shuttle Vectors,Vectors, Genetic,Cloning Vector,Genetic Vector,Shuttle Vector,Vector, Cloning,Vector, Genetic,Vector, Shuttle,Vectors, Cloning,Vectors, Shuttle

Related Publications

W Filsell, and J C Little, and A J Stones, and S P Granger, and S A Bayley
July 1988, Experimental cell research,
W Filsell, and J C Little, and A J Stones, and S P Granger, and S A Bayley
April 1997, Genes to cells : devoted to molecular & cellular mechanisms,
W Filsell, and J C Little, and A J Stones, and S P Granger, and S A Bayley
January 1987, Progress in clinical and biological research,
W Filsell, and J C Little, and A J Stones, and S P Granger, and S A Bayley
March 1988, Biulleten' eksperimental'noi biologii i meditsiny,
W Filsell, and J C Little, and A J Stones, and S P Granger, and S A Bayley
January 2002, Journal of andrology,
W Filsell, and J C Little, and A J Stones, and S P Granger, and S A Bayley
November 1991, Experimental cell research,
W Filsell, and J C Little, and A J Stones, and S P Granger, and S A Bayley
December 1993, Experimental neurology,
W Filsell, and J C Little, and A J Stones, and S P Granger, and S A Bayley
April 1989, Molecular and cellular biology,
Copied contents to your clipboard!