Time course of locomotor recovery and functional regeneration in spinal cord-transected lamprey: in vitro preparations. 1994

A D McClellan
Division of Biological Sciences, University of Missouri, Columbia 65211.

1. Previous studies indicate that after transection of the rostral spinal cord, larval lamprey begin to recover locomotor behavior 2 wk posttransection and recovery is complete at approximately 8 wk. To examine the mechanisms underlying behavioral recovery after spinal cord transection, in the present study the time course and extent of recovery of locomotor function was examined in in vitro brain/spinal cord preparations. With these preparations the contributions of functional regeneration of descending brain stem projections to recovery of spinal locomotor function can be examined in the absence of mechanosensory inputs and descending propriospinal relay systems. 2. In in vitro preparations from normal lamprey, stimulation in brain stem locomotor regions resulted in direct descending activation of locomotor networks in the rostral, middle, and caudal spinal cord. 3. At 4 wk posttransection, in vitro locomotor activity was usually confined to the rostral spinal cord a few millimeters below the transection site. At 8 wk posttransection locomotor activity was present in both the rostral and middle spinal cord, and spinal locomotor networks at these levels could be directly activated by restored descending projections from the brain stem. 4. At 16-32 wk posttransection locomotor activity similar to that seen in normal animals was present along the spinal cord. Additional manipulations suggest that at 32 wk posttransection descending axons from brain stem command/initiation neurons had grown for relatively long distances and could directly activate the locomotor networks in the caudal spinal cord. At each recovery time examined the ranges of locomotor parameters (cycle time, burst proportion, and intersegmental phase lag) overlapped with those in normal animals. 5. In vitro locomotor activity in spinal cord-transected animals could be recorded at progressively more caudal levels below the transection site during the course of recovery. However, locomotor activity in in vitro preparations occurred for shorter distances below the lesion than in whole animals at comparable recovery times. 6. Our recent double-labeling experiments suggest that behavioral recovery in spinal cord-transected lamprey is largely due to true regeneration of preexisting descending axons rather than development of new descending projections. Thus, these results in conjunction with our behavioral, in vitro, and anatomic data suggest that functional regeneration of descending axons from the brain, as well as other mechanisms such as descending propriospinal relay systems and mechanosensory inputs, account for the gradual restoration of locomotor function in spinal cord-transected lamprey.

UI MeSH Term Description Entries
D007798 Lampreys Common name for the only family (Petromyzontidae) of eellike fish in the order Petromyzontiformes. They are jawless but have a sucking mouth with horny teeth. Eels, Lamprey,Petromyzontidae,Petromyzontiformes,Eel, Lamprey,Lamprey,Lamprey Eel,Lamprey Eels
D007814 Larva Wormlike or grublike stage, following the egg in the life cycle of insects, worms, and other metamorphosing animals. Maggots,Tadpoles,Larvae,Maggot,Tadpole
D008124 Locomotion Movement or the ability to move from one place or another. It can refer to humans, vertebrate or invertebrate animals, and microorganisms. Locomotor Activity,Activities, Locomotor,Activity, Locomotor,Locomotor Activities
D008465 Mechanoreceptors Cells specialized to transduce mechanical stimuli and relay that information centrally in the nervous system. Mechanoreceptor cells include the INNER EAR hair cells, which mediate hearing and balance, and the various somatosensory receptors, often with non-neural accessory structures. Golgi Tendon Organ,Golgi Tendon Organs,Krause's End Bulb,Krause's End Bulbs,Mechanoreceptor,Mechanoreceptor Cell,Meissner's Corpuscle,Neurotendinous Spindle,Neurotendinous Spindles,Receptors, Stretch,Ruffini's Corpuscle,Ruffini's Corpuscles,Stretch Receptor,Stretch Receptors,Mechanoreceptor Cells,Bulb, Krause's End,Bulbs, Krause's End,Cell, Mechanoreceptor,Cells, Mechanoreceptor,Corpuscle, Meissner's,Corpuscle, Ruffini's,Corpuscles, Ruffini's,End Bulb, Krause's,End Bulbs, Krause's,Krause End Bulb,Krause End Bulbs,Krauses End Bulb,Krauses End Bulbs,Meissner Corpuscle,Meissners Corpuscle,Organ, Golgi Tendon,Organs, Golgi Tendon,Receptor, Stretch,Ruffini Corpuscle,Ruffini Corpuscles,Ruffinis Corpuscle,Ruffinis Corpuscles,Spindle, Neurotendinous,Spindles, Neurotendinous,Tendon Organ, Golgi,Tendon Organs, Golgi
D008675 Metamorphosis, Biological Profound physical changes during maturation of living organisms from the immature forms to the adult forms, such as from TADPOLES to frogs; caterpillars to BUTTERFLIES. Biological Metamorphosis,Biological Metamorphoses,Metamorphoses, Biological
D009415 Nerve Net A meshlike structure composed of interconnecting nerve cells that are separated at the synaptic junction or joined to one another by cytoplasmic processes. In invertebrates, for example, the nerve net allows nerve impulses to spread over a wide area of the net because synapses can pass information in any direction. Neural Networks (Anatomic),Nerve Nets,Net, Nerve,Nets, Nerve,Network, Neural (Anatomic),Networks, Neural (Anatomic),Neural Network (Anatomic)
D009416 Nerve Regeneration Renewal or physiological repair of damaged nerve tissue. Nerve Tissue Regeneration,Nervous Tissue Regeneration,Neural Tissue Regeneration,Nerve Tissue Regenerations,Nervous Tissue Regenerations,Neural Tissue Regenerations,Regeneration, Nerve,Regeneration, Nerve Tissue,Regeneration, Nervous Tissue,Regeneration, Neural Tissue,Tissue Regeneration, Nerve,Tissue Regeneration, Nervous,Tissue Regeneration, Neural
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011434 Proprioception Sensory functions that transduce stimuli received by proprioceptive receptors in joints, tendons, muscles, and the INNER EAR into neural impulses to be transmitted to the CENTRAL NERVOUS SYSTEM. Proprioception provides sense of stationary positions and movements of one's body parts, and is important in maintaining KINESTHESIA and POSTURAL BALANCE. Labyrinthine Sense,Position Sense,Posture Sense,Sense of Equilibrium,Vestibular Sense,Sense of Position,Equilibrium Sense,Sense, Labyrinthine,Sense, Position,Sense, Posture,Sense, Vestibular
D001933 Brain Stem The part of the brain that connects the CEREBRAL HEMISPHERES with the SPINAL CORD. It consists of the MESENCEPHALON; PONS; and MEDULLA OBLONGATA. Brainstem,Truncus Cerebri,Brain Stems,Brainstems,Cerebri, Truncus,Cerebrus, Truncus,Truncus Cerebrus

Related Publications

A D McClellan
June 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience,
A D McClellan
October 1947, The Journal of comparative neurology,
A D McClellan
December 2007, Brain and nerve = Shinkei kenkyu no shinpo,
Copied contents to your clipboard!