Neural basis for motor learning in the vestibuloocular reflex of primates. III. Computational and behavioral analysis of the sites of learning. 1994

S G Lisberger
Department of Physiology, W. M. Keck Foundation Center for Integrative Neuroscience, University of California, San Francisco 94143.

1. We have used a combination of eye movement recordings and computer modeling to study long-term adaptive modification (motor learning) in the vestibuloocular reflex (VOR). The eye movement recordings place constraints on possible sites for motor learning. The computer model abides by these constraints, as well as constraints provided by data in previous papers, to formalize a new hypothesis about the sites of motor learning. The model was designed to reproduce as much of the existing neural and behavioral data as possible. 2. Motor learning was induced in monkeys by fitting them with spectacles that caused the gain of the VOR (eye speed divided by head speed) to increase to values > 1.6 or to decrease to values < 0.4. We elicited pursuit by providing ramp motion of a small target at 30 degrees/s along the horizontal axis. Changes in the gain of the VOR caused only small and inconsistent changes in the eye acceleration in the first 100 ms after the onset of pursuit and had no effect on the eye velocity during tracking of steady target motion. Electrical stimulation in the flocculus and ventral paraflocculus with single pulses or trains of pulses caused smooth eye movement toward the side of stimulation after latencies of 9-11 ms. Neither the latency, the peak eye velocity, nor the initial eye acceleration varied as a consistent function of the gain of the VOR. 3. The computer model contained nodes that represented position-vestibular-pause cells (PVP-cells) and flocculus target neurons (FTNs) in the vestibular nucleus, and horizontal gaze-velocity Purkinje cells (HGVP-cells) in the cerebellar flocculus and ventral paraflocculus. Node FTN represented only the "E-c FTNs," which show increased firing for eye motion away from the side of recording. The transfer functions in the model included dynamic elements (filters) as well as static elements (summing junctions, gain elements, and time delays). Except for the transfer functions that converted visual motion inputs into commands for smooth eye movement, the model was linear. 4. The performance of the model was determined both by computer simulation and, for the VOR in the dark, by analytic solution of linear equations. For simulation, we adjusted the parameters by hand to match the output of the model to the eye velocity of monkeys and to match the activity of the relevant nodes in the model to the firing of HGVP-cells, FTNs, and PVP-cells when the gain of the VOR was 0.4, 1.0, and 1.6.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D008253 Macaca mulatta A species of the genus MACACA inhabiting India, China, and other parts of Asia. The species is used extensively in biomedical research and adapts very well to living with humans. Chinese Rhesus Macaques,Macaca mulatta lasiota,Monkey, Rhesus,Rhesus Monkey,Rhesus Macaque,Chinese Rhesus Macaque,Macaca mulatta lasiotas,Macaque, Rhesus,Rhesus Macaque, Chinese,Rhesus Macaques,Rhesus Macaques, Chinese,Rhesus Monkeys
D008297 Male Males
D008959 Models, Neurological Theoretical representations that simulate the behavior or activity of the neurological system, processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Neurologic Models,Model, Neurological,Neurologic Model,Neurological Model,Neurological Models,Model, Neurologic,Models, Neurologic
D009334 Neck Muscles The neck muscles consist of the platysma, splenius cervicis, sternocleidomastoid(eus), longus colli, the anterior, medius, and posterior scalenes, digastric(us), stylohyoid(eus), mylohyoid(eus), geniohyoid(eus), sternohyoid(eus), omohyoid(eus), sternothyroid(eus), and thyrohyoid(eus). Muscle, Neck,Muscles, Neck,Neck Muscle
D009434 Neural Pathways Neural tracts connecting one part of the nervous system with another. Neural Interconnections,Interconnection, Neural,Interconnections, Neural,Neural Interconnection,Neural Pathway,Pathway, Neural,Pathways, Neural
D009949 Orientation Awareness of oneself in relation to time, place and person. Cognitive Orientation,Mental Orientation,Psychological Orientation,Cognitive Orientations,Mental Orientations,Orientation, Cognitive,Orientation, Mental,Orientation, Psychological,Orientations,Orientations, Cognitive,Orientations, Mental,Orientations, Psychological,Psychological Orientations
D011689 Purkinje Cells The output neurons of the cerebellar cortex. Purkinje Cell,Purkinje Neuron,Purkyne Cell,Cell, Purkinje,Cell, Purkyne,Cells, Purkinje,Cells, Purkyne,Neuron, Purkinje,Neurons, Purkinje,Purkinje Neurons,Purkyne Cells
D011698 Pursuit, Smooth Eye movements that are slow, continuous, and conjugate and occur when a fixed object is moved slowly. Pursuits, Smooth,Smooth Pursuit,Smooth Pursuits
D011939 Mental Recall The process whereby a representation of past experience is elicited. Recall, Mental
D012027 Reflex, Vestibulo-Ocular A reflex wherein impulses are conveyed from the cupulas of the SEMICIRCULAR CANALS and from the OTOLITHIC MEMBRANE of the SACCULE AND UTRICLE via the VESTIBULAR NUCLEI of the BRAIN STEM and the median longitudinal fasciculus to the OCULOMOTOR NERVE nuclei. It functions to maintain a stable retinal image during head rotation by generating appropriate compensatory EYE MOVEMENTS. Vestibulo-Ocular Reflex,Reflex, Vestibuloocular,Reflexes, Vestibo-Ocular,Reflexes, Vestibuloocular,Reflex, Vestibulo Ocular,Reflexes, Vestibo Ocular,Vestibo-Ocular Reflexes,Vestibulo Ocular Reflex,Vestibuloocular Reflex,Vestibuloocular Reflexes

Related Publications

S G Lisberger
January 2004, Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference,
S G Lisberger
December 1961, Neurology,
S G Lisberger
December 2007, Journal of neurophysiology,
S G Lisberger
February 1984, Journal of neurophysiology,
S G Lisberger
July 2018, Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference,
S G Lisberger
November 2012, Trends in cognitive sciences,
S G Lisberger
November 1994, Journal of neurophysiology,
S G Lisberger
March 2023, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Copied contents to your clipboard!