[Candidate gene approach in Japanese NIDDM: liver/pancreatic beta cell type glucose transporter (GLUT2)]. 1994

K Yasuda, and Y Seino
Department of Metabolism and Clinical Nutrition, Kyoto University Faculty of Medicine.

The liver/pancreatic beta cell type glucose transporter (GLUT2) is expressed in the pancreatic beta cell, a glucose carrier with a low affinity for glucose but a high capacity for glucose transport. The expression of GLUT2 in the normal pancreatic islet is increased after exposure to high glucose, while it is decreased in model animal with non-insulin-dependent diabetes mellitus (NIDDM). In Pima Indians, to assess the genetic components of the acute insulin response (AIR) and NIDDM, polymorphic dinucleotide repeat regions in the GLUT2 gene were evaluated. Robust sib-pair linkage analyses suggest linkage between GLUT2 and AIR, but no linkage was observed with NIDDM. The coding region of the GLUT2 gene was screened for mutations using polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) analysis. A single base change was identified in exon 3 in -5% of the study population. Although this base change resulted in an amino acid substitution (Thr110-Ile110), no significant association was noted between AIR and the mutation. We also screened for mutations using PCR-SSCP analysis in Japanese subjects. A single base silent polymorphism (Phe497, TTT-TTC) was identified in exon 10. Significant association was noted between TTC type and NIDDM (N = 78), compared to normal controls (N = 80). These data suggest the possibility that GLUT2 is one of the candidate genes for NIDDM.

UI MeSH Term Description Entries
D007515 Islets of Langerhans Irregular microscopic structures consisting of cords of endocrine cells that are scattered throughout the PANCREAS among the exocrine acini. Each islet is surrounded by connective tissue fibers and penetrated by a network of capillaries. There are four major cell types. The most abundant beta cells (50-80%) secrete INSULIN. Alpha cells (5-20%) secrete GLUCAGON. PP cells (10-35%) secrete PANCREATIC POLYPEPTIDE. Delta cells (~5%) secrete SOMATOSTATIN. Islands of Langerhans,Islet Cells,Nesidioblasts,Pancreas, Endocrine,Pancreatic Islets,Cell, Islet,Cells, Islet,Endocrine Pancreas,Islet Cell,Islet, Pancreatic,Islets, Pancreatic,Langerhans Islands,Langerhans Islets,Nesidioblast,Pancreatic Islet
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D009004 Monosaccharide Transport Proteins A large group of membrane transport proteins that shuttle MONOSACCHARIDES across CELL MEMBRANES. Hexose Transport Proteins,Band 4.5 Preactin,Erythrocyte Band 4.5 Protein,Glucose Transport-Inducing Protein,Hexose Transporter,4.5 Preactin, Band,Glucose Transport Inducing Protein,Preactin, Band 4.5,Proteins, Monosaccharide Transport,Transport Proteins, Hexose,Transport Proteins, Monosaccharide,Transport-Inducing Protein, Glucose
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D011110 Polymorphism, Genetic The regular and simultaneous occurrence in a single interbreeding population of two or more discontinuous genotypes. The concept includes differences in genotypes ranging in size from a single nucleotide site (POLYMORPHISM, SINGLE NUCLEOTIDE) to large nucleotide sequences visible at a chromosomal level. Gene Polymorphism,Genetic Polymorphism,Polymorphism (Genetics),Genetic Polymorphisms,Gene Polymorphisms,Polymorphism, Gene,Polymorphisms (Genetics),Polymorphisms, Gene,Polymorphisms, Genetic
D003924 Diabetes Mellitus, Type 2 A subclass of DIABETES MELLITUS that is not INSULIN-responsive or dependent (NIDDM). It is characterized initially by INSULIN RESISTANCE and HYPERINSULINEMIA; and eventually by GLUCOSE INTOLERANCE; HYPERGLYCEMIA; and overt diabetes. Type II diabetes mellitus is no longer considered a disease exclusively found in adults. Patients seldom develop KETOSIS but often exhibit OBESITY. Diabetes Mellitus, Adult-Onset,Diabetes Mellitus, Ketosis-Resistant,Diabetes Mellitus, Maturity-Onset,Diabetes Mellitus, Non-Insulin-Dependent,Diabetes Mellitus, Slow-Onset,Diabetes Mellitus, Stable,MODY,Maturity-Onset Diabetes Mellitus,NIDDM,Diabetes Mellitus, Non Insulin Dependent,Diabetes Mellitus, Noninsulin Dependent,Diabetes Mellitus, Noninsulin-Dependent,Diabetes Mellitus, Type II,Maturity-Onset Diabetes,Noninsulin-Dependent Diabetes Mellitus,Type 2 Diabetes,Type 2 Diabetes Mellitus,Adult-Onset Diabetes Mellitus,Diabetes Mellitus, Adult Onset,Diabetes Mellitus, Ketosis Resistant,Diabetes Mellitus, Maturity Onset,Diabetes Mellitus, Slow Onset,Diabetes, Maturity-Onset,Diabetes, Type 2,Ketosis-Resistant Diabetes Mellitus,Maturity Onset Diabetes,Maturity Onset Diabetes Mellitus,Non-Insulin-Dependent Diabetes Mellitus,Noninsulin Dependent Diabetes Mellitus,Slow-Onset Diabetes Mellitus,Stable Diabetes Mellitus
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D016133 Polymerase Chain Reaction In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships. Anchored PCR,Inverse PCR,Nested PCR,PCR,Anchored Polymerase Chain Reaction,Inverse Polymerase Chain Reaction,Nested Polymerase Chain Reaction,PCR, Anchored,PCR, Inverse,PCR, Nested,Polymerase Chain Reactions,Reaction, Polymerase Chain,Reactions, Polymerase Chain

Related Publications

K Yasuda, and Y Seino
October 1994, Nihon rinsho. Japanese journal of clinical medicine,
K Yasuda, and Y Seino
February 1994, Biochemical Society transactions,
Copied contents to your clipboard!