In vitro and in vivo 13C and 31P NMR analyses of phosphocholine metabolism in rat glioma cells. 1994

R J Gillies, and J A Barry, and B D Ross
Department of Biochemistry, University of Arizona HSC, Tucson 85724.

In vivo magnetic resonance spectroscopy (MRS) has revealed that phosphomonoesters (PME) such as phosphocholine (PCho) and phosphoethanolamine (PEth) are elevated in tumors and rapidly proliferating tissues. The regulation of PME levels and their relationship to proliferation are not well known. In the present study, we investigated the regulation of PCho and PEth levels in rat glioma cells grown in vivo and in vitro using 31P and 13C MRS. However, the ability of cells to produce choline endogenously is variable. To fully understand regulation of PCho levels, it is necessary to characterize the activity of the endogenous pathway, if it exists. This was first investigated by following the metabolic fate of 13C-labeled methionine of 9L glioma tumors in vivo. Our results indicate that there is a significant amount of de novo choline synthesis in vivo. However, similar experiments performed in vitro using cells cultured in bioreactors indicated that glioma cells themselves are unable to synthesize choline de novo, suggesting that the in vivo results were due to the involvement of extra-tumoral organs, e.g., liver. Further in vitro experiments demonstrated that the uptake and phosphorylation of physiologically relevant concentrations of exogenous choline is very active in these systems. Thus, it appears that the exogenous pathway for PCho biosynthesis predominates and regulates PCho levels in glioma cells. Our results also demonstrate that PCho levels are lowest, and PEth levels are highest, in non-proliferating cells. These observations indicate that there is a decrease in the biosynthesis of PCho concomitant with a reduction in culture growth. The source of the increased PEth is, as yet, undefined.

UI MeSH Term Description Entries
D008715 Methionine A sulfur-containing essential L-amino acid that is important in many body functions. L-Methionine,Liquimeth,Methionine, L-Isomer,Pedameth,L-Isomer Methionine,Methionine, L Isomer
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D009943 Organophosphorus Compounds Organic compounds that contain phosphorus as an integral part of the molecule. Included under this heading is broad array of synthetic compounds that are used as PESTICIDES and DRUGS. Organophosphorus Compound,Organopyrophosphorus Compound,Organopyrophosphorus Compounds,Compound, Organophosphorus,Compound, Organopyrophosphorus,Compounds, Organophosphorus,Compounds, Organopyrophosphorus
D010713 Phosphatidylcholines Derivatives of PHOSPHATIDIC ACIDS in which the phosphoric acid is bound in ester linkage to a CHOLINE moiety. Choline Phosphoglycerides,Choline Glycerophospholipids,Phosphatidyl Choline,Phosphatidyl Cholines,Phosphatidylcholine,Choline, Phosphatidyl,Cholines, Phosphatidyl,Glycerophospholipids, Choline,Phosphoglycerides, Choline
D010718 Phosphatidylserines Derivatives of PHOSPHATIDIC ACIDS in which the phosphoric acid is bound in ester linkage to a SERINE moiety. Serine Phosphoglycerides,Phosphatidyl Serine,Phosphatidyl Serines,Phosphatidylserine,Phosphoglycerides, Serine,Serine, Phosphatidyl,Serines, Phosphatidyl
D010759 Phosphorus Isotopes Stable phosphorus atoms that have the same atomic number as the element phosphorus, but differ in atomic weight. P-31 is a stable phosphorus isotope. Isotopes, Phosphorus
D010767 Phosphorylcholine Calcium and magnesium salts used therapeutically in hepatobiliary dysfunction. Choline Chloride Dihydrogen Phosphate,Choline Phosphate Chloride,Phosphorylcholine Chloride,Choline Phosphate,Phosphocholine,Chloride, Choline Phosphate,Chloride, Phosphorylcholine,Phosphate Chloride, Choline,Phosphate, Choline
D011916 Rats, Inbred F344 An inbred strain of rat that is used for general BIOMEDICAL RESEARCH purposes. Fischer Rats,Rats, Inbred CDF,Rats, Inbred Fischer 344,Rats, F344,Rats, Inbred Fisher 344,CDF Rat, Inbred,CDF Rats, Inbred,F344 Rat,F344 Rat, Inbred,F344 Rats,F344 Rats, Inbred,Inbred CDF Rat,Inbred CDF Rats,Inbred F344 Rat,Inbred F344 Rats,Rat, F344,Rat, Inbred CDF,Rat, Inbred F344,Rats, Fischer
D002247 Carbon Isotopes Stable carbon atoms that have the same atomic number as the element carbon but differ in atomic weight. C-13 is a stable carbon isotope. Carbon Isotope,Isotope, Carbon,Isotopes, Carbon
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M

Related Publications

R J Gillies, and J A Barry, and B D Ross
April 1988, Magnetic resonance in medicine,
R J Gillies, and J A Barry, and B D Ross
January 1993, Surgical oncology,
R J Gillies, and J A Barry, and B D Ross
August 1987, The Journal of biological chemistry,
R J Gillies, and J A Barry, and B D Ross
May 1990, The American journal of physiology,
R J Gillies, and J A Barry, and B D Ross
February 1996, The Journal of biological chemistry,
R J Gillies, and J A Barry, and B D Ross
August 1998, Magma (New York, N.Y.),
R J Gillies, and J A Barry, and B D Ross
June 2000, Proceedings of the National Academy of Sciences of the United States of America,
R J Gillies, and J A Barry, and B D Ross
August 1984, Federation proceedings,
Copied contents to your clipboard!