Cloning, sequencing, and characterization of multicopy suppressors of a mukB mutation in Escherichia coli. 1994

K Yamanaka, and T Mitani, and T Ogura, and H Niki, and S Hiraga
Department of Molecular Cell Biology, Kumamoto University School of Medicine, Japan.

The mukB gene codes for a 177 kDa protein, which might be a candidate for a force-generating enzyme in chromosome positioning in Escherichia coli. The mukB106 mutant produces normal-sized, anucleate cells and shows a temperature-sensitive colony formation. To identify proteins interacting with the MukB protein, we isolated three multicopy suppressors (msmA, msmB, and msmC) to the temperature-sensitive colony formation of the mukB106 mutation. The msmA gene, which could not suppress the production of anucleate cells, was found to be identical to the dksA gene. The msmB and msmC genes suppressed the production of anucleate cells as well as the temperature-sensitive colony formation. However, none of them could suppress both phenotypes in a mukB null mutation. DNA sequencing revealed that the msmB gene was identical to the cspC gene and that the msmC gene had not been described before. A homology search revealed that the amino acid sequences of both MsmB and MsmC possessed high similarity to proteins containing the cold-shock domain, such as CspA of E. coli and the Y-box binding proteins of eukaryotes; this suggests that MsmB and MsmC might be DNA-binding proteins that recognize the CCAAT sequence. Hence, the msmB and msmC genes were renamed cspC and cspE, respectively. Possible mechanisms for suppression of the mukB106 mutation are discussed.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002868 Chromosomal Proteins, Non-Histone Nucleoproteins, which in contrast to HISTONES, are acid insoluble. They are involved in chromosomal functions; e.g. they bind selectively to DNA, stimulate transcription resulting in tissue-specific RNA synthesis and undergo specific changes in response to various hormones or phytomitogens. Non-Histone Chromosomal Proteins,Chromosomal Proteins, Non Histone,Chromosomal Proteins, Nonhistone,Non-Histone Chromosomal Phosphoproteins,Chromosomal Phosphoproteins, Non-Histone,Non Histone Chromosomal Phosphoproteins,Non Histone Chromosomal Proteins,Nonhistone Chromosomal Proteins,Proteins, Non-Histone Chromosomal
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D006360 Heat-Shock Proteins Proteins which are synthesized in eukaryotic organisms and bacteria in response to hyperthermia and other environmental stresses. They increase thermal tolerance and perform functions essential to cell survival under these conditions. Stress Protein,Stress Proteins,Heat-Shock Protein,Heat Shock Protein,Heat Shock Proteins,Protein, Stress
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

K Yamanaka, and T Mitani, and T Ogura, and H Niki, and S Hiraga
April 1994, Molecular & general genetics : MGG,
K Yamanaka, and T Mitani, and T Ogura, and H Niki, and S Hiraga
July 1996, Journal of bacteriology,
K Yamanaka, and T Mitani, and T Ogura, and H Niki, and S Hiraga
June 1991, The Journal of biological chemistry,
K Yamanaka, and T Mitani, and T Ogura, and H Niki, and S Hiraga
January 1991, Research in microbiology,
K Yamanaka, and T Mitani, and T Ogura, and H Niki, and S Hiraga
July 1980, Journal of bacteriology,
K Yamanaka, and T Mitani, and T Ogura, and H Niki, and S Hiraga
September 2002, Molecular genetics and genomics : MGG,
K Yamanaka, and T Mitani, and T Ogura, and H Niki, and S Hiraga
June 1986, Journal of bacteriology,
K Yamanaka, and T Mitani, and T Ogura, and H Niki, and S Hiraga
December 1987, Molecular & general genetics : MGG,
K Yamanaka, and T Mitani, and T Ogura, and H Niki, and S Hiraga
July 2004, Molecular microbiology,
K Yamanaka, and T Mitani, and T Ogura, and H Niki, and S Hiraga
February 1978, Molecular & general genetics : MGG,
Copied contents to your clipboard!