Identification and characterization of an antisense RNA transcript (gfg) from the human basic fibroblast growth factor gene. 1994

P R Murphy, and R S Knee
Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada.

Basic fibroblast growth factor (bFGF) is an autocrine growth factor that is overexpressed in glial tumor cells and promotes their unregulated proliferation. We have previously reported that increased messenger RNA (mRNA) stability contributes to the elevated steady state levels of bFGF mRNA in human U87-MG glioma cells. Stability of bFGF mRNA is regulated by a natural antisense transcript in Xenopus oocytes, but the mammalian equivalent of this transcript has not previously been described. We were interested in identifying the human equivalent of this antisense transcript in order to study its role in bFGF mRNA stability. Analysis of the 3'-untranslated region of the 6.7-kilobase human bFGF mRNA revealed two areas of greater than 75% homology to exons 3 and 4 of the Xenopus antisense transcript, separated by 4300 basepairs of nonhomologous sequence. We used reverse transcription-polymerase chain reaction to amplify, clone, and sequence a 301-basepair fragment of the antisense splice variant from U87-MG cells. The clone (gfg-1) is 73% identical to the Xenopus sequence, with a conserved splice junction and an open reading frame. Strand-specific gfg-1 complementary RNA probes detect a 1.5-kilobase mRNA transcript in normal rat tissues and human T47D breast cancer cells, which contain very low levels of bFGF mRNA. In contrast, antisense transcript expression was undetectable by Northern hybridization in U87-MG cells, which overexpress the bFGF sense mRNA. The reciprocal relationship between bFGF sense and antisense expression suggests that antisense transcripts may regulate bFGF expression in mammalian cells, and that disruption of normal sense/antisense mRNA ratios may lead to overexpression of bFGF in some tumors.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009363 Neoplasm Proteins Proteins whose abnormal expression (gain or loss) are associated with the development, growth, or progression of NEOPLASMS. Some neoplasm proteins are tumor antigens (ANTIGENS, NEOPLASM), i.e. they induce an immune reaction to their tumor. Many neoplasm proteins have been characterized and are used as tumor markers (BIOMARKERS, TUMOR) when they are detectable in cells and body fluids as monitors for the presence or growth of tumors. Abnormal expression of ONCOGENE PROTEINS is involved in neoplastic transformation, whereas the loss of expression of TUMOR SUPPRESSOR PROTEINS is involved with the loss of growth control and progression of the neoplasm. Proteins, Neoplasm
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D005910 Glioma Benign and malignant central nervous system neoplasms derived from glial cells (i.e., astrocytes, oligodendrocytes, and ependymocytes). Astrocytes may give rise to astrocytomas (ASTROCYTOMA) or glioblastoma multiforme (see GLIOBLASTOMA). Oligodendrocytes give rise to oligodendrogliomas (OLIGODENDROGLIOMA) and ependymocytes may undergo transformation to become EPENDYMOMA; CHOROID PLEXUS NEOPLASMS; or colloid cysts of the third ventricle. (From Escourolle et al., Manual of Basic Neuropathology, 2nd ed, p21) Glial Cell Tumors,Malignant Glioma,Mixed Glioma,Glial Cell Tumor,Glioma, Malignant,Glioma, Mixed,Gliomas,Gliomas, Malignant,Gliomas, Mixed,Malignant Gliomas,Mixed Gliomas,Tumor, Glial Cell,Tumors, Glial Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012326 RNA Splicing The ultimate exclusion of nonsense sequences or intervening sequences (introns) before the final RNA transcript is sent to the cytoplasm. RNA, Messenger, Splicing,Splicing, RNA,RNA Splicings,Splicings, RNA
D012334 RNA, Neoplasm RNA present in neoplastic tissue. Neoplasm RNA
D012689 Sequence Homology, Nucleic Acid The sequential correspondence of nucleotides in one nucleic acid molecule with those of another nucleic acid molecule. Sequence homology is an indication of the genetic relatedness of different organisms and gene function. Base Sequence Homology,Homologous Sequences, Nucleic Acid,Homologs, Nucleic Acid Sequence,Homology, Base Sequence,Homology, Nucleic Acid Sequence,Nucleic Acid Sequence Homologs,Nucleic Acid Sequence Homology,Sequence Homology, Base,Base Sequence Homologies,Homologies, Base Sequence,Sequence Homologies, Base

Related Publications

P R Murphy, and R S Knee
June 1996, Biochemical and biophysical research communications,
P R Murphy, and R S Knee
January 1991, Growth factors (Chur, Switzerland),
P R Murphy, and R S Knee
November 2000, Clinical cancer research : an official journal of the American Association for Cancer Research,
P R Murphy, and R S Knee
May 1989, Journal of neuroscience research,
P R Murphy, and R S Knee
November 1988, The Journal of biological chemistry,
P R Murphy, and R S Knee
January 1991, Annals of the New York Academy of Sciences,
Copied contents to your clipboard!