Calcium and osteoporosis. 1994

F Bronner
Department of Biostructure and Function, University of Connecticut Health Center, Farmington 06030-3705.

Skeletal size and mass are genetically programmed. Optimum skeletal size can be attained if the nutrient supply, ie, calcium, is ample, but the age-dependent decrease in skeletal mass that begins in the third decade cannot be arrested by adequate calcium intake alone. The decrease in skeletal mass is primarily caused by the age-dependent decrease in gonadal hormones. The dramatic drop in hormones in menopause is associated with a sharp decrease in trabecular bone and a slower decrease in cortical bone. In men this decrease is gradual. Replacement therapy with gonadal hormones can markedly slow this decrease in bone mass, provided calcium intake is adequate. Soluble forms of calcium are preferred to ensure adequate calcium absorption. Vitamin D supplementation beyond the recommended dietary allowance does not appear beneficial in osteoporosis, but may be so in cases of senile hyperparathyroidism. Calculations based on bone calcium turnover indicate that the recommended dietary allowance for calcium is adequate for boys and men, but is insufficient for adolescent girls. Calcium intake by women is probably too low to slow bone calcium turnover to its programmed minimum. Adequate calcium intake in childhood and adolescence is essential to attain the optimal bone mass and size.

UI MeSH Term Description Entries
D008297 Male Males
D010024 Osteoporosis Reduction of bone mass without alteration in the composition of bone, leading to fractures. Primary osteoporosis can be of two major types: postmenopausal osteoporosis (OSTEOPOROSIS, POSTMENOPAUSAL) and age-related or senile osteoporosis. Age-Related Osteoporosis,Bone Loss, Age-Related,Osteoporosis, Age-Related,Osteoporosis, Post-Traumatic,Osteoporosis, Senile,Senile Osteoporosis,Osteoporosis, Involutional,Age Related Osteoporosis,Age-Related Bone Loss,Age-Related Bone Losses,Age-Related Osteoporoses,Bone Loss, Age Related,Bone Losses, Age-Related,Osteoporoses,Osteoporoses, Age-Related,Osteoporoses, Senile,Osteoporosis, Age Related,Osteoporosis, Post Traumatic,Post-Traumatic Osteoporoses,Post-Traumatic Osteoporosis,Senile Osteoporoses
D001842 Bone and Bones A specialized CONNECTIVE TISSUE that is the main constituent of the SKELETON. The principal cellular component of bone is comprised of OSTEOBLASTS; OSTEOCYTES; and OSTEOCLASTS, while FIBRILLAR COLLAGENS and hydroxyapatite crystals form the BONE MATRIX. Bone Tissue,Bone and Bone,Bone,Bones,Bones and Bone,Bones and Bone Tissue,Bony Apophyses,Bony Apophysis,Condyle,Apophyses, Bony,Apophysis, Bony,Bone Tissues,Condyles,Tissue, Bone,Tissues, Bone
D002113 Calcification, Physiologic Process by which organic tissue becomes hardened by the physiologic deposit of calcium salts. Bone Mineralization,Calcification, Physiological,Physiologic Calcification,Mineralization, Bone,Physiological Calcification
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D014807 Vitamin D A vitamin that includes both CHOLECALCIFEROLS and ERGOCALCIFEROLS, which have the common effect of preventing or curing RICKETS in animals. It can also be viewed as a hormone since it can be formed in SKIN by action of ULTRAVIOLET RAYS upon the precursors, 7-dehydrocholesterol and ERGOSTEROL, and acts on VITAMIN D RECEPTORS to regulate CALCIUM in opposition to PARATHYROID HORMONE.
D015663 Osteoporosis, Postmenopausal Metabolic disorder associated with fractures of the femoral neck, vertebrae, and distal forearm. It occurs commonly in women within 15-20 years after menopause, and is caused by factors associated with menopause including estrogen deficiency. Bone Loss, Perimenopausal,Bone Loss, Postmenopausal,Perimenopausal Bone Loss,Postmenopausal Bone Loss,Postmenopausal Osteoporosis,Osteoporosis, Post-Menopausal,Bone Losses, Perimenopausal,Bone Losses, Postmenopausal,Osteoporoses, Post-Menopausal,Osteoporoses, Postmenopausal,Osteoporosis, Post Menopausal,Perimenopausal Bone Losses,Post-Menopausal Osteoporoses,Post-Menopausal Osteoporosis,Postmenopausal Bone Losses,Postmenopausal Osteoporoses

Related Publications

F Bronner
April 1990, The Medical journal of Australia,
F Bronner
February 1992, Journal of internal medicine,
F Bronner
January 1994, Advances in nutritional research,
F Bronner
April 1991, Australian and New Zealand journal of medicine,
F Bronner
January 1997, Nutrition (Burbank, Los Angeles County, Calif.),
F Bronner
November 1986, The Journal of nutrition,
F Bronner
August 1990, The Medical journal of Australia,
F Bronner
January 1988, Annales chirurgiae et gynaecologiae,
F Bronner
January 1984, Annual review of nutrition,
F Bronner
February 1995, Revue medicale de la Suisse romande,
Copied contents to your clipboard!