Role of efflux pump(s) in intrinsic resistance of Pseudomonas aeruginosa: resistance to tetracycline, chloramphenicol, and norfloxacin. 1994

X Z Li, and D M Livermore, and H Nikaido
Department of Molecular and Cell Biology, University of California, Berkeley 94720.

Most strains of Pseudomonas aeruginosa are significantly more resistant, even in the absence of R plasmids, to many antimicrobial agents, including beta-lactams, tetracycline, chloramphenicol, and fluoroquinolones, than most other gram-negative rods. This broad-range resistance has so far been assumed to be mainly due to the low permeability of the P. aeruginosa outer membrane. The intrinsic-resistance phenotype becomes further enhanced in "intrinsically carbenicillin-resistant" isolates, which were often assumed to produce outer membranes of even lower permeability. It has been shown, however, that this hypothesis cannot explain the beta-lactam resistance of these isolates (D.M. Livermore and K.W.M. Davy, Antimicrob. Agents Chemother. 35:916-921, 1991). In this study, we examined the uptake of tetracycline, chloramphenicol, and norfloxacin by intact cells using strains showing widely different levels of intrinsic resistance. Their accumulation and the response to the addition of a proton conductor showed that even relatively susceptible strains of P. aeruginosa actively pump out these compounds from the cell and that the efflux activity becomes much stronger in strains showing higher levels of intrinsic resistance. We conclude that the efflux mechanism(s) are likely to contribute significantly to the intrinsic resistance of P. aeruginosa isolates to tetracycline, chloramphenicol, and fluoroquinolones, as does the low permeability of the outer membrane. This conclusion is supported by the observation that the hypersusceptibility to various agents of the mutant K799/61 (W. Zimmermann, Antimicrob. Agents Chemother. 18:94-100, 1980) was apparently caused by the lack of active efflux. Although the hypersusceptibility of this mutant has hitherto been assumed to be solely due to its higher outer membrane permeability, its outer membrane was shown to have a coefficient of permeability to cephaloridine that was not significantly different from that of the parent, resistant strain K799/WT. The strains with elevated intrinsic resistance overproduced two cytoplasmic membrane proteins and one outer membrane protein; at least two of these proteins appeared different from the proteins overproduced in the recently described mutant with a derepressed multidrug efflux system, MexA-MexB-OprK (K. Poole, K. Krebes, C. McNally, and S. Neshat, J. Bacteriol. 175:7363-7372, 1993).

UI MeSH Term Description Entries
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009643 Norfloxacin A synthetic fluoroquinolone (FLUOROQUINOLONES) with broad-spectrum antibacterial activity against most gram-negative and gram-positive bacteria. Norfloxacin inhibits bacterial DNA GYRASE. AM-0715,AM-715,MK-0366,MK-366,MK0366,MK366,Noroxin,AM 0715,AM 715,AM0715,MK 0366,MK 366
D011550 Pseudomonas aeruginosa A species of gram-negative, aerobic, rod-shaped bacteria commonly isolated from clinical specimens (wound, burn, and urinary tract infections). It is also found widely distributed in soil and water. P. aeruginosa is a major agent of nosocomial infection. Bacillus aeruginosus,Bacillus pyocyaneus,Bacterium aeruginosum,Bacterium pyocyaneum,Micrococcus pyocyaneus,Pseudomonas polycolor,Pseudomonas pyocyanea
D002701 Chloramphenicol An antibiotic first isolated from cultures of Streptomyces venequelae in 1947 but now produced synthetically. It has a relatively simple structure and was the first broad-spectrum antibiotic to be discovered. It acts by interfering with bacterial protein synthesis and is mainly bacteriostatic. (From Martindale, The Extra Pharmacopoeia, 29th ed, p106) Cloranfenicol,Kloramfenikol,Levomycetin,Amphenicol,Amphenicols,Chlornitromycin,Chlorocid,Chloromycetin,Detreomycin,Ophthochlor,Syntomycin
D002702 Chloramphenicol Resistance Nonsusceptibility of bacteria to the action of CHLORAMPHENICOL, a potent inhibitor of protein synthesis in the 50S ribosomal subunit where amino acids are added to nascent bacterial polypeptides. Chloramphenicol Resistances
D004352 Drug Resistance, Microbial The ability of microorganisms, especially bacteria, to resist or to become tolerant to chemotherapeutic agents, antimicrobial agents, or antibiotics. This resistance may be acquired through gene mutation or foreign DNA in transmissible plasmids (R FACTORS). Antibiotic Resistance,Antibiotic Resistance, Microbial,Antimicrobial Resistance, Drug,Antimicrobial Drug Resistance,Antimicrobial Drug Resistances,Antimicrobial Resistances, Drug,Drug Antimicrobial Resistance,Drug Antimicrobial Resistances,Drug Resistances, Microbial,Resistance, Antibiotic,Resistance, Drug Antimicrobial,Resistances, Drug Antimicrobial
D013752 Tetracycline A naphthacene antibiotic that inhibits AMINO ACYL TRNA binding during protein synthesis. 4-Epitetracycline,Achromycin,Achromycin V,Hostacyclin,Sustamycin,Tetrabid,Tetracycline Hydrochloride,Tetracycline Monohydrochloride,Topicycline,4 Epitetracycline
D013753 Tetracycline Resistance Nonsusceptibility of bacteria to the action of TETRACYCLINE which inhibits aminoacyl-tRNA binding to the 30S ribosomal subunit during protein synthesis.

Related Publications

X Z Li, and D M Livermore, and H Nikaido
October 1996, Antimicrobial agents and chemotherapy,
X Z Li, and D M Livermore, and H Nikaido
July 2010, Pharmacotherapy,
X Z Li, and D M Livermore, and H Nikaido
April 1987, Antimicrobial agents and chemotherapy,
X Z Li, and D M Livermore, and H Nikaido
August 1975, Canadian journal of microbiology,
X Z Li, and D M Livermore, and H Nikaido
January 2018, Journal of infection in developing countries,
X Z Li, and D M Livermore, and H Nikaido
September 2000, Antimicrobial agents and chemotherapy,
Copied contents to your clipboard!