The electron transfer reactions of NADPH: cytochrome P450 reductase with nonphysiological oxidants. 1994

N Cénas, and Z Anusevicius, and D Bironaité, and G I Bachmanova, and A I Archakov, and K Ollinger
Institute of Biochemistry, Lithuanian Academy of Sciences, Vilnius.

The steady-state kinetics of oxidation of rat liver NADPH: cytochrome P450 reductase (EC 1.6.2.4) by quinones, aromatic nitrocompounds, ferricyanide, Fe(EDTA)-, and cytochrome c has been studied. The logarithms of bimolecular rate constants of reduction (kcat/Km) of quinones and nitrocompounds increase with the increase in their single-electronreduction potential (E1(7)), reaching a maximum value at E1(7) > -0.15 V. The reactivities of nitroaromatics are about by an order of magnitude lower than the reactivities of quinones. For a series of nitroaromatics including the compounds with previously undetermined E1(7) values, an orthogonality was found between their reactivities toward cytochrome P450 reductase, flavocytochrome b2 (EC 1.1.2.3), and the NADPH: adrenodoxin reductase (EC 1.18.1.2)-adrenodoxin system. This indicates the absence of significant specific interactions during these reactions. The effects of ionic strength on reaction kinetics and the character of inhibition by a product of reaction, NADP+, are in accordance with the reduction of oxidants at the negatively charged site in the surroundings of FMN of P450 reductase. Quinones inactivate oxidized reductase modifying the NADP(H) binding site. The redox cycling of quinones markedly slows the inactivation. The kinetic data presented are consistent with an outer-sphere electron transfer mechanism. The analysis of kinetics of reduction of cytochrome c, ferricyanide, and Fe(EDTA)- using the model of Mauk et al. (A. G. Mauk, R. A. Scott, and H. B. Gray (1980) J. Am. Chem. Soc. 102, 4360-4363) gives calculated distances of FMN from the surface of protein globule, 0.33-0.63 nm. The data from nitroreductase reactions of cytochrome P450 reductase, flavocytochrome b2, and adrenodoxin were used for approximate evaluation of previously unknown E1(7) of nitrocompounds.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D009251 NADPH-Ferrihemoprotein Reductase A flavoprotein that catalyzes the reduction of heme-thiolate-dependent monooxygenases and is part of the microsomal hydroxylating system. EC 1.6.2.4. Cytochrome P-450 Reductase,Ferrihemoprotein P-450 Reductase,NADPH Cytochrome P-450 Oxidoreductase,NADPH Cytochrome P-450 Reductase,NADPH Cytochrome c Reductase,Cytochrome P-450 Oxidase,Cytochrome P450 Reductase,Ferrihemoprotein P450 Reductase,NADPH Cytochrome P450 Oxidoreductase,NADPH Cytochrome P450 Reductase,NADPH-Cytochrome P450 Reductase,NADPH-P450 Reductase,Cytochrome P 450 Oxidase,Cytochrome P 450 Reductase,Ferrihemoprotein P 450 Reductase,NADPH Cytochrome P 450 Oxidoreductase,NADPH Cytochrome P 450 Reductase,NADPH Ferrihemoprotein Reductase,NADPH P450 Reductase,Oxidase, Cytochrome P-450,P-450 Oxidase, Cytochrome,P450 Reductase, Cytochrome,P450 Reductase, NADPH-Cytochrome,Reductase, Cytochrome P-450,Reductase, Cytochrome P450,Reductase, Ferrihemoprotein P-450,Reductase, Ferrihemoprotein P450,Reductase, NADPH-Cytochrome P450,Reductase, NADPH-Ferrihemoprotein,Reductase, NADPH-P450
D009574 Nitro Compounds Compounds having the nitro group, -NO2, attached to carbon. When attached to nitrogen they are nitramines and attached to oxygen they are NITRATES. Nitrated Compounds
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D011809 Quinones Hydrocarbon rings which contain two ketone moieties in any position. They can be substituted in any position except at the ketone groups.
D005486 Flavin Mononucleotide A coenzyme for a number of oxidative enzymes including NADH DEHYDROGENASE. It is the principal form in which RIBOFLAVIN is found in cells and tissues. FMN,Flavin Mononucleotide Disodium Salt,Flavin Mononucleotide Monosodium Salt,Flavin Mononucleotide Monosodium Salt, Dihydrate,Flavin Mononucleotide Sodium Salt,Riboflavin 5'-Monophosphate,Riboflavin 5'-Phosphate,Riboflavin Mononucleotide,Sodium Riboflavin Phosphate,5'-Monophosphate, Riboflavin,5'-Phosphate, Riboflavin,Mononucleotide, Flavin,Mononucleotide, Riboflavin,Phosphate, Sodium Riboflavin,Riboflavin 5' Monophosphate,Riboflavin 5' Phosphate,Riboflavin Phosphate, Sodium
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D016877 Oxidants Electron-accepting molecules in chemical reactions in which electrons are transferred from one molecule to another (OXIDATION-REDUCTION). Oxidant,Oxidizing Agent,Oxidizing Agents,Agent, Oxidizing,Agents, Oxidizing
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

N Cénas, and Z Anusevicius, and D Bironaité, and G I Bachmanova, and A I Archakov, and K Ollinger
December 2010, The Biochemical journal,
N Cénas, and Z Anusevicius, and D Bironaité, and G I Bachmanova, and A I Archakov, and K Ollinger
February 2008, The Journal of biological chemistry,
N Cénas, and Z Anusevicius, and D Bironaité, and G I Bachmanova, and A I Archakov, and K Ollinger
July 1992, The Journal of biological chemistry,
N Cénas, and Z Anusevicius, and D Bironaité, and G I Bachmanova, and A I Archakov, and K Ollinger
February 1976, Archives of biochemistry and biophysics,
N Cénas, and Z Anusevicius, and D Bironaité, and G I Bachmanova, and A I Archakov, and K Ollinger
June 2003, Biochemical Society transactions,
N Cénas, and Z Anusevicius, and D Bironaité, and G I Bachmanova, and A I Archakov, and K Ollinger
January 2011, Biochimica et biophysica acta,
N Cénas, and Z Anusevicius, and D Bironaité, and G I Bachmanova, and A I Archakov, and K Ollinger
August 2005, Archives of biochemistry and biophysics,
N Cénas, and Z Anusevicius, and D Bironaité, and G I Bachmanova, and A I Archakov, and K Ollinger
January 2009, Nature protocols,
N Cénas, and Z Anusevicius, and D Bironaité, and G I Bachmanova, and A I Archakov, and K Ollinger
November 1993, Biochemistry,
N Cénas, and Z Anusevicius, and D Bironaité, and G I Bachmanova, and A I Archakov, and K Ollinger
January 2009, Postepy biochemii,
Copied contents to your clipboard!