Retention and retrieval in the endoplasmic reticulum and the Golgi apparatus. 1994

T Nilsson, and G Warren
Cell Biology Laboratory, Imperial Cancer Research Fund, London, UK.

Resident proteins of the exocytic pathway contain at least two types of information in their primary sequence for determining their subcellular location. The first type of information is found at the carboxyl terminus of soluble proteins of the endoplasmic reticulum (ER) and in the cytoplasmic domain of some ER and Golgi membrane proteins. It acts as a retrieval signal, returning proteins that have left the compartment in which they reside. The second type of information has been found in the membrane-spanning domain of several ER and Golgi proteins and, though the mechanism by which it operates is still unclear, it acts as a retention signal, keeping the protein at a particular location within the organelle. The presence of both a retrieval signal and a retention signal in a trans-Golgi network resident protein suggests that more than one mechanism operates to ensure correct localization of resident proteins along the exocytic pathway.

UI MeSH Term Description Entries
D007425 Intracellular Membranes Thin structures that encapsulate subcellular structures or ORGANELLES in EUKARYOTIC CELLS. They include a variety of membranes associated with the CELL NUCLEUS; the MITOCHONDRIA; the GOLGI APPARATUS; the ENDOPLASMIC RETICULUM; LYSOSOMES; PLASTIDS; and VACUOLES. Membranes, Intracellular,Intracellular Membrane,Membrane, Intracellular
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009842 Oligopeptides Peptides composed of between two and twelve amino acids. Oligopeptide
D004721 Endoplasmic Reticulum A system of cisternae in the CYTOPLASM of many cells. In places the endoplasmic reticulum is continuous with the plasma membrane (CELL MEMBRANE) or outer membrane of the nuclear envelope. If the outer surfaces of the endoplasmic reticulum membranes are coated with ribosomes, the endoplasmic reticulum is said to be rough-surfaced (ENDOPLASMIC RETICULUM, ROUGH); otherwise it is said to be smooth-surfaced (ENDOPLASMIC RETICULUM, SMOOTH). (King & Stansfield, A Dictionary of Genetics, 4th ed) Ergastoplasm,Reticulum, Endoplasmic
D006056 Golgi Apparatus A stack of flattened vesicles that functions in posttranslational processing and sorting of proteins, receiving them from the rough ENDOPLASMIC RETICULUM and directing them to secretory vesicles, LYSOSOMES, or the CELL MEMBRANE. The movement of proteins takes place by transfer vesicles that bud off from the rough endoplasmic reticulum or Golgi apparatus and fuse with the Golgi, lysosomes or cell membrane. (From Glick, Glossary of Biochemistry and Molecular Biology, 1990) Golgi Complex,Apparatus, Golgi,Complex, Golgi
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D017434 Protein Structure, Tertiary The level of protein structure in which combinations of secondary protein structures (ALPHA HELICES; BETA SHEETS; loop regions, and AMINO ACID MOTIFS) pack together to form folded shapes. Disulfide bridges between cysteines in two different parts of the polypeptide chain along with other interactions between the chains play a role in the formation and stabilization of tertiary structure. Tertiary Protein Structure,Protein Structures, Tertiary,Tertiary Protein Structures
D021382 Protein Sorting Signals Amino acid sequences found in transported proteins that selectively guide the distribution of the proteins to specific cellular compartments. Leader Signal Peptides,Leader Peptide,Leader Sequences, Peptide,Peptide Leader Sequences,Peptide Signal Sequences,Signal Peptide,Signal Peptides,Signal Sequence, Peptide,Signal Sequences,Signal Sequences, Peptide,Leader Peptides,Leader Sequence, Peptide,Leader Signal Peptide,Peptide Leader Sequence,Peptide Signal Sequence,Peptide, Leader,Peptide, Leader Signal,Peptide, Signal,Peptides, Leader,Peptides, Leader Signal,Peptides, Signal,Protein Sorting Signal,Sequence, Peptide Leader,Sequence, Peptide Signal,Sequence, Signal,Sequences, Peptide Leader,Sequences, Peptide Signal,Sequences, Signal,Signal Peptide, Leader,Signal Peptides, Leader,Signal Sequence,Signal, Protein Sorting,Signals, Protein Sorting,Sorting Signal, Protein,Sorting Signals, Protein

Related Publications

T Nilsson, and G Warren
August 1995, Current opinion in cell biology,
T Nilsson, and G Warren
July 1984, Cell structure and function,
T Nilsson, and G Warren
August 2002, Current opinion in cell biology,
T Nilsson, and G Warren
February 1979, The Anatomical record,
T Nilsson, and G Warren
May 2011, Cold Spring Harbor perspectives in biology,
T Nilsson, and G Warren
March 1993, Trends in cell biology,
T Nilsson, and G Warren
January 1976, Mikroskopie,
T Nilsson, and G Warren
January 1987, Annual review of biochemistry,
Copied contents to your clipboard!