Insulin-dependent diabetes mellitus as an autoimmune disease. 1994

J F Bach
INSERM U 25, Hôpital Necker, Paris, France.

IDDM is unquestionably an autoimmune disease, as reflected by the presence of beta-cell-reactive autoantibodies and T cells, T cell-mediated transfer of the disease in nondiabetic mice, rats, and humans, and disease sensitivity to immunosuppressive therapy. T cells are predominantly, if not exclusively, involved in creating the islet lesions that lead to beta-cell atrophy after a stage of reversible inflammation. A full understanding of the disease pathogenesis will require a better definition of the nature of the triggering and target autoantigen(s) and of the effector mechanisms (cytokines, cytotoxic cells?). Much less information is available on the etiology than on the pathogenesis. Genetic factors are mandatory and the involvement of predisposition genes (HLA and non-HLA) is now being unravelled. The modulatory role of environmental factors is demonstrated by the high disease discordance rate in identical twins and by experimental data showing positive and negative modulation of the disease by a number of agents, notably infectious agents and food constituents. It is not clear, however, whether a given environmental factor, e.g. a precise virus or a cow's milk component, plays a real etiological role in a selected genetic background. IDDM thus appears as a multifactorial disease. It is not known, however, whether all factors intervene concomitantly in a given individual or separately in subsets of patients, explaining the clinical heterogeneity of the disease. The mechanisms underlying the loss of tolerance to self beta-cell autoantigen(s) are still unknown. Defective intrathymic negative selection of autoantigen-specific autoreactive T cell clones is unlikely. Breakdown of T cell anergy could occur according to various mechanisms, including aberrant expression of MHC molecules and molecular mimicry. Defective suppressor T cell function, perhaps related to TH1/TH2 imbalance, probably intervenes by amplifying the anti-beta-cell autoimmune response whatever its triggering mechanism. Before putative etiological agents are identified, one must base immunotherapy on nonantigen-specific agents. Results recently obtained in NOD mice indicate that the goal of nontoxic long-lasting immune protection from the disease is feasible if treatment is started early enough. In some cases (anti-T cell monoclonal antibodies), it appears that specific unresponsiveness can be induced. This double strategy (early intervention, tolerance induction) is the main challenge for immunodiabetologists.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D007515 Islets of Langerhans Irregular microscopic structures consisting of cords of endocrine cells that are scattered throughout the PANCREAS among the exocrine acini. Each islet is surrounded by connective tissue fibers and penetrated by a network of capillaries. There are four major cell types. The most abundant beta cells (50-80%) secrete INSULIN. Alpha cells (5-20%) secrete GLUCAGON. PP cells (10-35%) secrete PANCREATIC POLYPEPTIDE. Delta cells (~5%) secrete SOMATOSTATIN. Islands of Langerhans,Islet Cells,Nesidioblasts,Pancreas, Endocrine,Pancreatic Islets,Cell, Islet,Cells, Islet,Endocrine Pancreas,Islet Cell,Islet, Pancreatic,Islets, Pancreatic,Langerhans Islands,Langerhans Islets,Nesidioblast,Pancreatic Islet
D003921 Diabetes Mellitus, Experimental Diabetes mellitus induced experimentally by administration of various diabetogenic agents or by PANCREATECTOMY. Alloxan Diabetes,Streptozocin Diabetes,Streptozotocin Diabetes,Experimental Diabetes Mellitus,Diabete, Streptozocin,Diabetes, Alloxan,Diabetes, Streptozocin,Diabetes, Streptozotocin,Streptozocin Diabete
D003922 Diabetes Mellitus, Type 1 A subtype of DIABETES MELLITUS that is characterized by INSULIN deficiency. It is manifested by the sudden onset of severe HYPERGLYCEMIA, rapid progression to DIABETIC KETOACIDOSIS, and DEATH unless treated with insulin. The disease may occur at any age, but is most common in childhood or adolescence. Diabetes Mellitus, Brittle,Diabetes Mellitus, Insulin-Dependent,Diabetes Mellitus, Juvenile-Onset,Diabetes Mellitus, Ketosis-Prone,Diabetes Mellitus, Sudden-Onset,Diabetes, Autoimmune,IDDM,Autoimmune Diabetes,Diabetes Mellitus, Insulin-Dependent, 1,Diabetes Mellitus, Type I,Insulin-Dependent Diabetes Mellitus 1,Juvenile-Onset Diabetes,Type 1 Diabetes,Type 1 Diabetes Mellitus,Brittle Diabetes Mellitus,Diabetes Mellitus, Insulin Dependent,Diabetes Mellitus, Juvenile Onset,Diabetes Mellitus, Ketosis Prone,Diabetes Mellitus, Sudden Onset,Diabetes, Juvenile-Onset,Diabetes, Type 1,Insulin Dependent Diabetes Mellitus 1,Insulin-Dependent Diabetes Mellitus,Juvenile Onset Diabetes,Juvenile-Onset Diabetes Mellitus,Ketosis-Prone Diabetes Mellitus,Sudden-Onset Diabetes Mellitus
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001324 Autoantigens Endogenous tissue constituents with the ability to interact with AUTOANTIBODIES and cause an immune response. Autoantigen,Autologous Antigen,Autologous Antigens,Self-Antigen,Self-Antigens,Antigen, Autologous,Antigens, Autologous,Self Antigen,Self Antigens
D001327 Autoimmune Diseases Disorders that are characterized by the production of antibodies that react with host tissues or immune effector cells that are autoreactive to endogenous peptides. Autoimmune Disease,Disease, Autoimmune,Diseases, Autoimmune
D017634 Self Tolerance The normal lack of the ability to produce an immunological response to autologous (self) antigens. A breakdown of self tolerance leads to autoimmune diseases. The ability to recognize the difference between self and non-self is the prime function of the immune system. Self Tolerances,Tolerance, Self,Tolerances, Self

Related Publications

J F Bach
January 1988, In vivo (Athens, Greece),
J F Bach
November 1989, Clinical immunology and immunopathology,
J F Bach
February 1987, Canadian family physician Medecin de famille canadien,
J F Bach
January 1986, Comptes rendus de l'Academie des sciences. Serie III, Sciences de la vie,
J F Bach
December 1987, Polski tygodnik lekarski (Warsaw, Poland : 1960),
J F Bach
January 1997, Journal of pediatric endocrinology & metabolism : JPEM,
Copied contents to your clipboard!