Mechanism of p-nitrosophenol reduction catalyzed by horse liver and human pi-alcohol dehydrogenase (ADH). Human pi-ADH as a quinone reductase. 1994

Z Maskos, and G W Winston
Department of Biochemistry, Louisiana State University, Baton Rouge 70803-1800.

The mechanism of reduction of p-nitrosophenol (pNSP) catalyzed by horse liver alcohol dehydrogenase (HADH) and human pi-alcohol dehydrogenase (pi-ADH) has been compared in transient and steady-state experiments. Our results indicate that pNSP reduction catalyzed by these two ADH proceeds by different mechanisms. In one mechanism, shown by Equation 1, pNSP is reduced to p-aminophenol (pAP) via two enzymatic steps (Steps 1 and 3), which are mediated by the nonenzymatic dehydration of p-N-hydroxyaminophenol (pN-OHAP) to 1,4-benzoquinoneimine (BQI) (Step 2). [formula: see text] Pathway (I) is proposed mainly for pi-ADH but can be catalyzed by HADH. However, Step 3 is catalyzed approximately 2 orders of magnitude more slowly by HADH than by pi-ADH. This conclusion is confirmed by the results, which indicate that pi-ADH very efficiently catalyzes the reduction of BQI and 1,4-benzoquinone (BQ) to the corresponding hydroquinones. The kinetic constants determined at pH 7.4 suggest that pi-ADH is a more efficient quinone reductase and nitroso reductase than it is an ethanol oxidase or acetaldehyde reductase. An alternative mechanism of pNSP reduction, shown by Equation 2, is suggested for HADH. In this mechanism, formation of the p-hydroxybenzylnitrenium ion (pNH+P) occurs at the active-site zinc ion of the enzyme (Step 2) and accelerates further nonenzymatic reduction to pAP or hydrolysis to BQ (Step 3). [formula: see text]

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D009243 NAD A coenzyme composed of ribosylnicotinamide 5'-diphosphate coupled to adenosine 5'-phosphate by pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). (Dorland, 27th ed) Coenzyme I,DPN,Diphosphopyridine Nucleotide,Nadide,Nicotinamide-Adenine Dinucleotide,Dihydronicotinamide Adenine Dinucleotide,NADH,Adenine Dinucleotide, Dihydronicotinamide,Dinucleotide, Dihydronicotinamide Adenine,Dinucleotide, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide,Nucleotide, Diphosphopyridine
D009603 Nitroso Compounds Organic compounds containing the nitroso (-N Compounds, Nitroso
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D011808 Quinone Reductases NAD(P)H:(quinone acceptor) oxidoreductases. A family that includes three enzymes which are distinguished by their sensitivity to various inhibitors. EC 1.6.99.2 (NAD(P)H DEHYDROGENASE (QUINONE);) is a flavoprotein which reduces various quinones in the presence of NADH or NADPH and is inhibited by dicoumarol. EC 1.6.99.5 (NADH dehydrogenase (quinone)) requires NADH, is inhibited by AMP and 2,4-dinitrophenol but not by dicoumarol or folic acid derivatives. EC 1.6.99.6 (NADPH dehydrogenase (quinone)) requires NADPH and is inhibited by dicoumarol and folic acid derivatives but not by 2,4-dinitrophenol. Menaquinone Reductases,Reductases, Menaquinone,Reductases, Quinone
D006736 Horses Large, hoofed mammals of the family EQUIDAE. Horses are active day and night with most of the day spent seeking and consuming food. Feeding peaks occur in the early morning and late afternoon, and there are several daily periods of rest. Equus caballus,Equus przewalskii,Horse, Domestic,Domestic Horse,Domestic Horses,Horse,Horses, Domestic
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations

Related Publications

Z Maskos, and G W Winston
February 1995, Archives of biochemistry and biophysics,
Z Maskos, and G W Winston
October 1980, Biochemistry,
Z Maskos, and G W Winston
January 1984, The International journal of biochemistry,
Z Maskos, and G W Winston
February 1980, European journal of biochemistry,
Copied contents to your clipboard!