Analysis of repair of cyclobutane pyrimidine dimers and pyrimidine 6-4 pyrimidone photoproducts in transcriptionally active and inactive genes in Chinese hamster cells. 1994

M P Vreeswijk, and A van Hoffen, and B E Westland, and H Vrieling, and A A van Zeeland, and L H Mullenders
Department of Radiation Genetics and Chemical Mutagenesis, Leiden University, The Netherlands.

Irradiation of cells with short wave ultraviolet light (UV-C) induces both cyclobutane pyrimidine dimers (CPD) as well as pyrimidine 6-4 pyrimidone photoproducts (6-4 PP). We have focused on the removal of both types of DNA photolesions from the transcriptionally active adenine phosphoribosyltransferase (APRT) and hypoxanthine-guanine phosphoribosyltransferase (HPRT) genes and the inactive c-mos gene. Induction levels of both CPD and 6-4 PP were similar for all three genes analyzed, with the induction of 6-4 PP being about 3-fold lower than of CPD. Repair of CPD was analyzed using the CPD-specific enzyme T4 endonuclease V; repair of 6-4 PP was examined employing Escherichia coli UvrABC excinuclease. Unlike the HPRT gene, in which CPD were removed selectively from the transcribed strand, both strands of the 16-kilobase fragment encompassing the 2.6-kilobase APRT gene were repaired efficiently. This suggests the existence of multiple transcription units in the APRT region including transcription units running in the opposite direction of the APRT gene. Only a marginal part of the CPD was removed from the inactive c-mos gene after 24 h. In all three genes investigated, 6-4 PP were repaired more rapidly than CPD and, as demonstrated for the HPRT and APRT genes, without strand specificity. The difference in the repair phenotype of CPD between the HPRT gene and the APRT gene coincides with differences between both genes with regard to the DNA strand distribution of previously published UV-induced mutations.

UI MeSH Term Description Entries
D007041 Hypoxanthine Phosphoribosyltransferase An enzyme that catalyzes the conversion of 5-phosphoribosyl-1-pyrophosphate and hypoxanthine, guanine, or MERCAPTOPURINE to the corresponding 5'-mononucleotides and pyrophosphate. The enzyme is important in purine biosynthesis as well as central nervous system functions. Complete lack of enzyme activity is associated with the LESCH-NYHAN SYNDROME, while partial deficiency results in overproduction of uric acid. EC 2.4.2.8. Guanine Phosphoribosyltransferase,HPRT,Hypoxanthine-Guanine Phosphoribosyltransferase,IMP Pyrophosphorylase,HGPRT,HPRTase,Hypoxanthine Guanine Phosphoribosyltransferase,Phosphoribosyltransferase, Guanine,Phosphoribosyltransferase, Hypoxanthine,Phosphoribosyltransferase, Hypoxanthine-Guanine,Pyrophosphorylase, IMP
D011740 Pyrimidine Dimers Dimers found in DNA chains damaged by ULTRAVIOLET RAYS. They consist of two adjacent PYRIMIDINE NUCLEOTIDES, usually THYMINE nucleotides, in which the pyrimidine residues are covalently joined by a cyclobutane ring. These dimers block DNA REPLICATION. Cyclobutane Pyrimidine Dimer,Cyclobutane-Pyrimidine Dimer,Cytosine-Thymine Dimer,Pyrimidine Dimer,Thymine Dimer,Thymine Dimers,Cyclobutane-Pyrimidine Dimers,Cytosine-Thymine Dimers,Thymine-Cyclobutane Dimer,Thymine-Thymine Cyclobutane Dimer,Cyclobutane Dimer, Thymine-Thymine,Cyclobutane Dimers, Thymine-Thymine,Cyclobutane Pyrimidine Dimers,Cytosine Thymine Dimer,Cytosine Thymine Dimers,Pyrimidine Dimer, Cyclobutane,Pyrimidine Dimers, Cyclobutane,Thymine Cyclobutane Dimer,Thymine Thymine Cyclobutane Dimer,Thymine-Cyclobutane Dimers,Thymine-Thymine Cyclobutane Dimers
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D003412 Cricetulus A genus of the family Muridae consisting of eleven species. C. migratorius, the grey or Armenian hamster, and C. griseus, the Chinese hamster, are the two species used in biomedical research. Hamsters, Armenian,Hamsters, Chinese,Hamsters, Grey,Armenian Hamster,Armenian Hamsters,Chinese Hamster,Chinese Hamsters,Grey Hamster,Grey Hamsters,Hamster, Armenian,Hamster, Chinese,Hamster, Grey
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004260 DNA Repair The removal of DNA LESIONS and/or restoration of intact DNA strands without BASE PAIR MISMATCHES, intrastrand or interstrand crosslinks, or discontinuities in the DNA sugar-phosphate backbones. DNA Damage Response
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D000228 Adenine Phosphoribosyltransferase An enzyme catalyzing the formation of AMP from adenine and phosphoribosylpyrophosphate. It can act as a salvage enzyme for recycling of adenine into nucleic acids. EC 2.4.2.7. AMP Pyrophosphorylase,Transphosphoribosidase,APRTase,Phosphoribosyltransferase, Adenine,Pyrophosphorylase, AMP
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

M P Vreeswijk, and A van Hoffen, and B E Westland, and H Vrieling, and A A van Zeeland, and L H Mullenders
September 1990, Radiation research,
M P Vreeswijk, and A van Hoffen, and B E Westland, and H Vrieling, and A A van Zeeland, and L H Mullenders
September 1985, The Journal of biological chemistry,
M P Vreeswijk, and A van Hoffen, and B E Westland, and H Vrieling, and A A van Zeeland, and L H Mullenders
January 1992, Mutation research,
M P Vreeswijk, and A van Hoffen, and B E Westland, and H Vrieling, and A A van Zeeland, and L H Mullenders
January 2001, Mutagenesis,
M P Vreeswijk, and A van Hoffen, and B E Westland, and H Vrieling, and A A van Zeeland, and L H Mullenders
June 1995, Cancer research,
M P Vreeswijk, and A van Hoffen, and B E Westland, and H Vrieling, and A A van Zeeland, and L H Mullenders
June 1987, Photochemistry and photobiology,
M P Vreeswijk, and A van Hoffen, and B E Westland, and H Vrieling, and A A van Zeeland, and L H Mullenders
July 1990, The Journal of investigative dermatology,
M P Vreeswijk, and A van Hoffen, and B E Westland, and H Vrieling, and A A van Zeeland, and L H Mullenders
May 1995, International journal of radiation biology,
M P Vreeswijk, and A van Hoffen, and B E Westland, and H Vrieling, and A A van Zeeland, and L H Mullenders
November 1994, Mutation research,
M P Vreeswijk, and A van Hoffen, and B E Westland, and H Vrieling, and A A van Zeeland, and L H Mullenders
November 1993, Molecular microbiology,
Copied contents to your clipboard!