3'-->5' exonuclease active site of phi 29 DNA polymerase. Evidence favoring a metal ion-assisted reaction mechanism. 1994

J A Esteban, and M S Soengas, and M Salas, and L Blanco
Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma, Canto Blanco, Madrid, Spain.

The residues forming the 3'-->5' exonuclease active site of phi 29 DNA polymerase, located at the N-terminal conserved motifs Exo I, Exo II and Exo III, have been defined by site-directed mutagenesis (Bernad, A., Blanco, L., Lázaro, J. M., Martin, G., and Salas, M. (1989) Cell 59, 219-228; Soengas, M. S., Esteban, J. A., Lázaro, J. M., Bernad, A., Blasco, M. A., Salas, M., and Blanco, L. (1992) EMBO J. 11, 4227-4237). To understand their catalytic role, the residual exonuclease activity of mutants at these active site residues has been kinetically studied. The critical function of residues Asp12, Glu14, Asp66, and Asp169 is supported by a 10(5)-fold reduction in the exonuclease catalytic rate upon single mutation. Residue Tyr165 seems to play a secondary role in the exonuclease reaction based on the 10(2)-10(3)-fold reduced catalytic rate of mutants Y165F and Y165C. Most of the mutants were specially active in the presence of Mn2+ ions, which could be indicative of a direct involvement of these residues in a metal ion-assisted exonucleolytic reaction. The data obtained strongly suggest that the 3'-->5' exonuclease active site of phi 29 DNA polymerase is structurally and functionally similar to that of the Escherichia coli DNA polymerase I. In addition, these residues were also very important for the strand displacement ability of phi 29 DNA polymerase, suggesting a structural overlapping of this activity with the 3'-->5' exonuclease.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008345 Manganese A trace element with atomic symbol Mn, atomic number 25, and atomic weight 54.94. It is concentrated in cell mitochondria, mostly in the pituitary gland, liver, pancreas, kidney, and bone, influences the synthesis of mucopolysaccharides, stimulates hepatic synthesis of cholesterol and fatty acids, and is a cofactor in many enzymes, including arginase and alkaline phosphatase in the liver. (From AMA Drug Evaluations Annual 1992, p2035)
D008670 Metals Electropositive chemical elements characterized by ductility, malleability, luster, and conductance of heat and electricity. They can replace the hydrogen of an acid and form bases with hydroxyl radicals. (Grant & Hackh's Chemical Dictionary, 5th ed) Metal
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009841 Oligonucleotides Polymers made up of a few (2-20) nucleotides. In molecular genetics, they refer to a short sequence synthesized to match a region where a mutation is known to occur, and then used as a probe (OLIGONUCLEOTIDE PROBES). (Dorland, 28th ed) Oligonucleotide
D002384 Catalysis The facilitation of a chemical reaction by material (catalyst) that is not consumed by the reaction. Catalyses
D004259 DNA-Directed DNA Polymerase DNA-dependent DNA polymerases found in bacteria, animal and plant cells. During the replication process, these enzymes catalyze the addition of deoxyribonucleotide residues to the end of a DNA strand in the presence of DNA as template-primer. They also possess exonuclease activity and therefore function in DNA repair. DNA Polymerase,DNA Polymerases,DNA-Dependent DNA Polymerases,DNA Polymerase N3,DNA Dependent DNA Polymerases,DNA Directed DNA Polymerase,DNA Polymerase, DNA-Directed,DNA Polymerases, DNA-Dependent,Polymerase N3, DNA,Polymerase, DNA,Polymerase, DNA-Directed DNA,Polymerases, DNA,Polymerases, DNA-Dependent DNA
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations

Related Publications

J A Esteban, and M S Soengas, and M Salas, and L Blanco
February 1985, Nucleic acids research,
J A Esteban, and M S Soengas, and M Salas, and L Blanco
November 2000, Journal of molecular biology,
J A Esteban, and M S Soengas, and M Salas, and L Blanco
January 1991, The EMBO journal,
J A Esteban, and M S Soengas, and M Salas, and L Blanco
September 1991, Molecular and cellular biology,
J A Esteban, and M S Soengas, and M Salas, and L Blanco
December 2009, Journal of biotechnology,
J A Esteban, and M S Soengas, and M Salas, and L Blanco
October 1989, Cell,
J A Esteban, and M S Soengas, and M Salas, and L Blanco
June 1997, Molecules and cells,
J A Esteban, and M S Soengas, and M Salas, and L Blanco
January 1991, The EMBO journal,
J A Esteban, and M S Soengas, and M Salas, and L Blanco
January 1995, Methods in enzymology,
Copied contents to your clipboard!