[Effects of ischemia and revascularization on the epithelium of the small intestine: study on swine]. 1994

F Barthod
Service de chirurgie générale, digestive et vasculaire, Hôpital A. Paré, Boulogne sur Seine.

Ischaemia of the small intestine leads to the destruction of the intestinal mucosa. The capacity of the epithelium to regenerate is proportional to the duration of revascularization. The aim of this work was to analyze the kinetic aspects of intestinal epithelial regeneration after destruction due to prolonged ischaemia. This study was conducted in 44 animals (swine) after development of an ischaemia-revascularization protocol of a jejunal loop and bipolar secondary cutaneous exteriorization. After a first series with ischaemia times of 1, 2, 3 and 4 hours, the 4 hour period of ischaemia was chosen for further analysis of the regeneration kinetics over a period of 21 days since it leads to regular and total destruction of the epithelium compatible with regeneration. This analysis included (1) a histological examination (semi-thin slices), (2) immunofluorescent detection of intestinal brush border proteins on frozen slices (villin, saccharase-isomaltase, aminopeptidase N, dipeptidylpeptidase-IV) and mucines, (3) measurement of specific intestinal hydrolase activities (saccharase, aminopeptidase N, dipeptidylpeptidase-IV and alkaline phosphatase) in enriched brush border fractions, and (4) an analysis of variations in intestinal flora. After the 4 hour ischaemia, total destruction of the epithelium with disappearance of the villin and intestinal hydrolases and disorganization of the mucosa invaded by mucosal lacks was observed. Epithelial regeneration was rapid and two days later the histological aspect of the mucosa showed apical expression (still discontinuous), villin and intestinal hydrolase activity. Luminal apical expression of the markers became continuous on day 4, demonstrating the total recovery of the intestinal barrier as confirmed by stable microbial flora. Mucine expression also returned to normal. This regeneration was however incomplete since the mucosa was seen to be flat, without villosities. Immunofluorescence showed the weak intensity of brush border activity and the very low specific activity of hydrolase. Values were below normal and did not start to rise again until day 21. If serum levels and associated brush border markers could be measured and were significant, they could be specific markers of regeneration in double stomy ischaemic-revascularized intestine and thus eliminate the need for early second look laparotomy.

UI MeSH Term Description Entries
D007413 Intestinal Mucosa Lining of the INTESTINES, consisting of an inner EPITHELIUM, a middle LAMINA PROPRIA, and an outer MUSCULARIS MUCOSAE. In the SMALL INTESTINE, the mucosa is characterized by a series of folds and abundance of absorptive cells (ENTEROCYTES) with MICROVILLI. Intestinal Epithelium,Intestinal Glands,Epithelium, Intestinal,Gland, Intestinal,Glands, Intestinal,Intestinal Gland,Mucosa, Intestinal
D007511 Ischemia A hypoperfusion of the BLOOD through an organ or tissue caused by a PATHOLOGIC CONSTRICTION or obstruction of its BLOOD VESSELS, or an absence of BLOOD CIRCULATION. Ischemias
D012016 Reference Values The range or frequency distribution of a measurement in a population (of organisms, organs or things) that has not been selected for the presence of disease or abnormality. Normal Range,Normal Values,Reference Ranges,Normal Ranges,Normal Value,Range, Normal,Range, Reference,Ranges, Normal,Ranges, Reference,Reference Range,Reference Value,Value, Normal,Value, Reference,Values, Normal,Values, Reference
D004152 Dipeptidyl-Peptidases and Tripeptidyl-Peptidases A subclass of exopeptidases that includes enzymes which cleave either two or three AMINO ACIDS from the end of a peptide chain. Dipeptidyl Peptidase,Dipeptidyl Peptidases,Dipeptidylpeptide Hydrolase,Tripeptidyl-Peptidase,Dipeptidylpeptide Hydrolases,Tripeptidyl-Peptidases,Dipeptidyl Peptidases and Tripeptidyl Peptidases,Hydrolase, Dipeptidylpeptide,Peptidase, Dipeptidyl,Tripeptidyl Peptidase,Tripeptidyl Peptidases,Tripeptidyl-Peptidases and Dipeptidyl-Peptidases
D005260 Female Females
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein
D000469 Alkaline Phosphatase An enzyme that catalyzes the conversion of an orthophosphoric monoester and water to an alcohol and orthophosphate. EC 3.1.3.1.
D000626 Aminopeptidases A subclass of EXOPEPTIDASES that act on the free N terminus end of a polypeptide liberating a single amino acid residue. EC 3.4.11. Aminopeptidase
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013394 Sucrase-Isomaltase Complex An enzyme complex found in the brush border membranes of the small intestine. It is believed to be an enzyme complex with different catalytic sites. Its absence is manifested by an inherited disease called sucrase-isomaltase deficiency. Sucrase Isomaltase Complex,Complex, Sucrase Isomaltase,Complex, Sucrase-Isomaltase,Isomaltase Complex, Sucrase

Related Publications

F Barthod
November 1972, Journal de chirurgie,
F Barthod
May 1975, Lakartidningen,
F Barthod
October 1976, The American journal of gastroenterology,
F Barthod
January 1985, Virchows Archiv. B, Cell pathology including molecular pathology,
F Barthod
January 1984, Biulleten' eksperimental'noi biologii i meditsiny,
Copied contents to your clipboard!