Structure and function of IP3 receptors. 1994

K Mikoshiba, and T Furuichi, and A Miyawaki
Department of Molecular Neurobiology, University of Tokyo, Minato-ku, Japan.

The molecular, structural and functional characteristics of the intracellular Ca2+ release channel activated by inositol 1,4,5-trisphosphate (IP3), also named IP3 receptor (IP3R), are described here. We also discuss the differences in primary structure, expression and modulation of the receptor subtypes and their physiological roles. The similarity and differences between the IP3R and the other intracellular Ca2+ channel, the ryanodine receptor, are briefly presented.

UI MeSH Term Description Entries
D009124 Muscle Proteins The protein constituents of muscle, the major ones being ACTINS and MYOSINS. More than a dozen accessory proteins exist including TROPONIN; TROPOMYOSIN; and DYSTROPHIN. Muscle Protein,Protein, Muscle,Proteins, Muscle
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D015220 Calcium Channels Voltage-dependent cell membrane glycoproteins selectively permeable to calcium ions. They are categorized as L-, T-, N-, P-, Q-, and R-types based on the activation and inactivation kinetics, ion specificity, and sensitivity to drugs and toxins. The L- and T-types are present throughout the cardiovascular and central nervous systems and the N-, P-, Q-, & R-types are located in neuronal tissue. Ion Channels, Calcium,Receptors, Calcium Channel Blocker,Voltage-Dependent Calcium Channel,Calcium Channel,Calcium Channel Antagonist Receptor,Calcium Channel Antagonist Receptors,Calcium Channel Blocker Receptor,Calcium Channel Blocker Receptors,Ion Channel, Calcium,Receptors, Calcium Channel Antagonist,VDCC,Voltage-Dependent Calcium Channels,Calcium Channel, Voltage-Dependent,Calcium Channels, Voltage-Dependent,Calcium Ion Channel,Calcium Ion Channels,Channel, Voltage-Dependent Calcium,Channels, Voltage-Dependent Calcium,Voltage Dependent Calcium Channel,Voltage Dependent Calcium Channels
D015544 Inositol 1,4,5-Trisphosphate Intracellular messenger formed by the action of phospholipase C on phosphatidylinositol 4,5-bisphosphate, which is one of the phospholipids that make up the cell membrane. Inositol 1,4,5-trisphosphate is released into the cytoplasm where it releases calcium ions from internal stores within the cell's endoplasmic reticulum. These calcium ions stimulate the activity of B kinase or calmodulin. 1,4,5-InsP3,Inositol 1,4,5-Triphosphate,Myo-Inositol 1,4,5-Trisphosphate,1,4,5-IP3,Myoinositol 1,4,5-Triphosphate
D053496 Inositol 1,4,5-Trisphosphate Receptors Intracellular receptors that bind to INOSITOL 1,4,5-TRISPHOSPHATE and play an important role in its intracellular signaling. Inositol 1,4,5-trisphosphate receptors are calcium channels that release CALCIUM in response to increased levels of inositol 1,4,5-trisphosphate in the CYTOPLASM. Inositol 1,4,5-Triphosphate Receptor,Inositol 1,4,5-Triphosphate Receptors,Inositol 1,4,5-Trisphosphate Receptor,1,4,5-INTP Receptor,INSP3 Receptor,INSP3 Receptor Type 1,INSP3 Receptor Type 2,INSP3 Receptor Type 3,IP3 Receptor,Inositol 1,4,5-trisphosphate Receptor Subtype 3,Inositol 1,4,5-trisphosphate Receptor Type 1,Inositol 1,4,5-trisphosphate Receptor Type 2,Inositol 1,4,5-trisphosphate Receptor Type 3,Inositol Triphosphate Receptor,Inositol-1,4,5-Triphosphate Receptor,Receptor, Inositol-1,4,5-triphosphate,Type 1 Inositol 1,4,5-trisphosphate Receptor,Type 3 Inositol 1,4,5-trisphosphate Receptor,Receptor, INSP3,Receptor, IP3,Receptor, Inositol Triphosphate,Triphosphate Receptor, Inositol
D018160 Receptors, Cytoplasmic and Nuclear Intracellular receptors that can be found in the cytoplasm or in the nucleus. They bind to extracellular signaling molecules that migrate through or are transported across the CELL MEMBRANE. Many members of this class of receptors occur in the cytoplasm and are transported to the CELL NUCLEUS upon ligand-binding where they signal via DNA-binding and transcription regulation. Also included in this category are receptors found on INTRACELLULAR MEMBRANES that act via mechanisms similar to CELL SURFACE RECEPTORS. Cytoplasmic Receptor,Cytoplasmic and Nuclear Receptors,Cytosolic and Nuclear Receptors,Hormone Receptors, Cytoplasmic,Hormone Receptors, Nuclear,Nuclear Hormone Receptor,Nuclear Receptor,Nuclear and Cytoplasmic Receptors,Cytoplasmic Hormone Receptors,Cytoplasmic Receptors,Cytosol and Nuclear Receptors,Intracellular Membrane Receptors,Nuclear Hormone Receptors,Nuclear Receptors,Receptors, Cytoplasmic,Receptors, Cytosol and Nuclear,Receptors, Cytosolic and Nuclear,Receptors, Intracellular Membrane,Receptors, Nuclear,Receptors, Nuclear and Cytoplasmic,Hormone Receptor, Nuclear,Membrane Receptors, Intracellular,Receptor, Cytoplasmic,Receptor, Nuclear,Receptor, Nuclear Hormone,Receptors, Cytoplasmic Hormone,Receptors, Nuclear Hormone
D019837 Ryanodine Receptor Calcium Release Channel A tetrameric calcium release channel in the SARCOPLASMIC RETICULUM membrane of SMOOTH MUSCLE CELLS, acting oppositely to SARCOPLASMIC RETICULUM CALCIUM-TRANSPORTING ATPASES. It is important in skeletal and cardiac excitation-contraction coupling and studied by using RYANODINE. Abnormalities are implicated in CARDIAC ARRHYTHMIAS and MUSCULAR DISEASES. Calcium-Ryanodine Receptor Complex,RyR1,Ryanodine Receptor 1,Ryanodine Receptor 2,Ryanodine Receptor 3,Ryanodine Receptors,Ca Release Channel-Ryanodine Receptor,Receptor, Ryanodine,RyR2,RyR3,Ryanodine Receptor,Ca Release Channel Ryanodine Receptor,Calcium Ryanodine Receptor Complex,Complex, Calcium-Ryanodine Receptor,Receptor 1, Ryanodine,Receptor 2, Ryanodine,Receptor 3, Ryanodine,Receptor Complex, Calcium-Ryanodine,Receptors, Ryanodine

Related Publications

K Mikoshiba, and T Furuichi, and A Miyawaki
April 2019, Cold Spring Harbor perspectives in biology,
K Mikoshiba, and T Furuichi, and A Miyawaki
January 2022, Physiological reviews,
K Mikoshiba, and T Furuichi, and A Miyawaki
May 2003, Current biology : CB,
K Mikoshiba, and T Furuichi, and A Miyawaki
April 2012, Biochemical Society transactions,
K Mikoshiba, and T Furuichi, and A Miyawaki
July 2023, Cell calcium,
K Mikoshiba, and T Furuichi, and A Miyawaki
April 2016, Science signaling,
K Mikoshiba, and T Furuichi, and A Miyawaki
July 1992, Current biology : CB,
K Mikoshiba, and T Furuichi, and A Miyawaki
July 2019, Biochimica et biophysica acta. Molecular cell research,
K Mikoshiba, and T Furuichi, and A Miyawaki
August 1995, Trends in neurosciences,
K Mikoshiba, and T Furuichi, and A Miyawaki
November 2006, Biochemical Society transactions,
Copied contents to your clipboard!