Role of the B domain for factor VIII and factor V expression and function. 1994

D D Pittman, and K A Marquette, and R J Kaufman
Genetics Institute, Cambridge, MA.

Factor V and factor VIII are homologous cofactors in the blood coagulation cascade that have the domain structure A1-A2-B-A3-C1-C2, of which the B domain has extensively diverged. In transfected COS-1 monkey cells, expression of factor VIII is approximately 10-fold less efficient than that of factor V, primarily because of inefficient protein secretion and, to a lesser extent, reduced mRNA expression. To study the functional significance and effect of the B domain on expression and activity, chimeric cDNAs were constructed in which the B domains of factor V and factor VIII were exchanged. Expression of a factor VIII chimera harboring the B-domain of factor V yielded a fully functional factor VIII molecule that was expressed twofold more efficiently than wild-type factor VIII because of increased mRNA expression. Thus, sequences within the factor VIII B domain were not responsible for the inefficient secretion of factor VIII compared with factor V. Expression of a factor V chimera harboring the B domain of factor VIII was slightly reduced compared with wild-type factor V, although the secreted molecule had significantly reduced procoagulant activity correlating with dissociated heavy and light chains and resistance to thrombin activation. Interestingly, the factor V chimera containing the factor VIII B domain was efficiently activated by Russell's viper venum (RVV). A factor V B domain deletion (residues 710-1545) molecule also exhibited significantly reduced procoagulant activity caused by resistance to thrombin cleavage and activation, although this molecule was activatable by RVV. These results show that, in contrast to factor VIII, thrombin activation of factor V requires sequences within the B domain. In addition, thrombin activation of factor V occurs through a different mechanism than activation by RVV.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D001777 Blood Coagulation The process of the interaction of BLOOD COAGULATION FACTORS that results in an insoluble FIBRIN clot. Blood Clotting,Coagulation, Blood,Blood Clottings,Clotting, Blood
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002522 Chlorocebus aethiops A species of CERCOPITHECUS containing three subspecies: C. tantalus, C. pygerythrus, and C. sabeus. They are found in the forests and savannah of Africa. The African green monkey is the natural host of SIMIAN IMMUNODEFICIENCY VIRUS and is used in AIDS research. African Green Monkey,Cercopithecus aethiops,Cercopithecus griseoviridis,Cercopithecus griseus,Cercopithecus pygerythrus,Cercopithecus sabeus,Cercopithecus tantalus,Chlorocebus cynosuros,Chlorocebus cynosurus,Chlorocebus pygerythrus,Green Monkey,Grivet Monkey,Lasiopyga weidholzi,Malbrouck,Malbrouck Monkey,Monkey, African Green,Monkey, Green,Monkey, Grivet,Monkey, Vervet,Savanah Monkey,Vervet Monkey,Savannah Monkey,African Green Monkey,Chlorocebus cynosuro,Green Monkey, African,Green Monkeys,Grivet Monkeys,Malbrouck Monkeys,Malbroucks,Monkey, Malbrouck,Monkey, Savanah,Monkey, Savannah,Savannah Monkeys,Vervet Monkeys
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D005165 Factor V Heat- and storage-labile plasma glycoprotein which accelerates the conversion of prothrombin to thrombin in blood coagulation. Factor V accomplishes this by forming a complex with factor Xa, phospholipid, and calcium (prothrombinase complex). Deficiency of factor V leads to Owren's disease. Coagulation Factor V,Proaccelerin,AC Globulin,Blood Coagulation Factor V,Factor 5,Factor Five,Factor Pi,Factor V, Coagulation
D005169 Factor VIII Factor VIII of blood coagulation. Antihemophilic factor that is part of the factor VIII/von Willebrand factor complex. Factor VIII is produced in the liver and acts in the intrinsic pathway of blood coagulation. It serves as a cofactor in factor X activation and this action is markedly enhanced by small amounts of thrombin. Coagulation Factor VIII,Factor VIII Clotting Antigen,Factor VIII Coagulant Antigen,Factor VIII Procoagulant Activity,Thromboplastinogen,Blood Coagulation Factor VIII,F VIII-C,Factor 8,Factor 8 C,Factor Eight,Factor VIIIC,Hyate-C,Hyatt-C,F VIII C,Hyate C,HyateC,Hyatt C,HyattC
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D005813 Genes, Synthetic Biologically functional sequences of DNA chemically synthesized in vitro. Artificial Genes,Synthetic Genes,Artificial Gene,Gene, Artificial,Gene, Synthetic,Genes, Artificial,Synthetic Gene

Related Publications

D D Pittman, and K A Marquette, and R J Kaufman
November 2009, Haemophilia : the official journal of the World Federation of Hemophilia,
D D Pittman, and K A Marquette, and R J Kaufman
April 2001, Seminars in hematology,
D D Pittman, and K A Marquette, and R J Kaufman
April 2001, Seminars in hematology,
D D Pittman, and K A Marquette, and R J Kaufman
September 2000, Current opinion in drug discovery & development,
D D Pittman, and K A Marquette, and R J Kaufman
October 1999, The Journal of biological chemistry,
D D Pittman, and K A Marquette, and R J Kaufman
September 2014, Haemophilia : the official journal of the World Federation of Hemophilia,
D D Pittman, and K A Marquette, and R J Kaufman
April 2001, Seminars in hematology,
D D Pittman, and K A Marquette, and R J Kaufman
July 1997, Thrombosis and haemostasis,
D D Pittman, and K A Marquette, and R J Kaufman
April 2001, Seminars in hematology,
Copied contents to your clipboard!