Characterization of a vitamin D3-resistant human chronic myelogenous leukemia cell line. 1994

S R Lasky, and M R Posner, and K Iwata, and A Santos-Moore, and A Yen, and V Samuel, and J Clark, and A L Maizel
Department of Pathology and Laboratory Medicine, Roger Williams Medical Center, Brown University School of Medicine, Providence, RI 02908.

A variant of the chronic myelogenous leukemia cell line, RWLeu-4, that is resistant to the antiproliferative effects of vitamin D3 was established. Although RWLeu-4 proliferation is inhibited by 1 nmol/L vitamin D3, the resistant cells (JMRD3) continue to proliferate in the presence of 100 nmol/L vitamin D3. Both cells express similar patterns of differentiation-specific antigens after treatment with vitamin D3, and both express the retinoblastoma gene product (p110Rb). Vitamin D3 treatment of the sensitive RWLeu-4 cells decreased the level of the p110Rb protein, as well as its phosphorylation. In contrast, vitamin D3 treatment of JMRD3 had no effect on p110Rb expression or phosphorylation. Both RWLeu-4 and JMRD3 express similar vitamin D3 receptors and vitamin D3-inducible enzyme activities. Differences were detected in the DNA binding characteristics of the vitamin D3 receptors as determined by electrophoretic mobility shift studies. However, sequence analysis of the DNA-binding domain and immunoblot analysis showed no differences in the receptors. We conclude that some process subsequent to vitamin D3 receptor activation is altered in JMRD3 that partially separates vitamin D3-induced inhibition of proliferation from the induction of differentiation.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009363 Neoplasm Proteins Proteins whose abnormal expression (gain or loss) are associated with the development, growth, or progression of NEOPLASMS. Some neoplasm proteins are tumor antigens (ANTIGENS, NEOPLASM), i.e. they induce an immune reaction to their tumor. Many neoplasm proteins have been characterized and are used as tumor markers (BIOMARKERS, TUMOR) when they are detectable in cells and body fluids as monitors for the presence or growth of tumors. Abnormal expression of ONCOGENE PROTEINS is involved in neoplastic transformation, whereas the loss of expression of TUMOR SUPPRESSOR PROTEINS is involved with the loss of growth control and progression of the neoplasm. Proteins, Neoplasm
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011499 Protein Processing, Post-Translational Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility. Amino Acid Modification, Post-Translational,Post-Translational Modification,Post-Translational Protein Modification,Posttranslational Modification,Protein Modification, Post-Translational,Amino Acid Modification, Posttranslational,Post-Translational Amino Acid Modification,Post-Translational Modifications,Post-Translational Protein Processing,Posttranslational Amino Acid Modification,Posttranslational Modifications,Posttranslational Protein Processing,Protein Processing, Post Translational,Protein Processing, Posttranslational,Amino Acid Modification, Post Translational,Modification, Post-Translational,Modification, Post-Translational Protein,Modification, Posttranslational,Modifications, Post-Translational,Modifications, Post-Translational Protein,Modifications, Posttranslational,Post Translational Amino Acid Modification,Post Translational Modification,Post Translational Modifications,Post Translational Protein Modification,Post Translational Protein Processing,Post-Translational Protein Modifications,Processing, Post-Translational Protein,Processing, Posttranslational Protein,Protein Modification, Post Translational,Protein Modifications, Post-Translational
D002117 Calcitriol The physiologically active form of vitamin D. It is formed primarily in the kidney by enzymatic hydroxylation of 25-hydroxycholecalciferol (CALCIFEDIOL). Its production is stimulated by low blood calcium levels and parathyroid hormone. Calcitriol increases intestinal absorption of calcium and phosphorus, and in concert with parathyroid hormone increases bone resorption. 1 alpha,25-Dihydroxycholecalciferol,1 alpha,25-Dihydroxyvitamin D3,1, 25-(OH)2D3,1,25(OH)2D3,1,25-Dihydroxycholecalciferol,1,25-Dihydroxyvitamin D3,1 alpha, 25-dihydroxy-20-epi-Vitamin D3,1,25(OH)2-20epi-D3,1,25-dihydroxy-20-epi-Vitamin D3,20-epi-1alpha,25-dihydroxycholecaliferol,Bocatriol,Calcijex,Calcitriol KyraMed,Calcitriol-Nefro,Decostriol,MC-1288,MC1288,Osteotriol,Renatriol,Rocaltrol,Silkis,Sitriol,Soltriol,Tirocal,1 alpha,25 Dihydroxyvitamin D3,1,25 Dihydroxycholecalciferol,1,25 Dihydroxyvitamin D3,1,25 dihydroxy 20 epi Vitamin D3,Calcitriol Nefro,D3, 1 alpha,25-Dihydroxyvitamin,D3, 1,25-Dihydroxyvitamin,D3, 1,25-dihydroxy-20-epi-Vitamin,KyraMed, Calcitriol,MC 1288
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D004273 DNA, Neoplasm DNA present in neoplastic tissue. Neoplasm DNA
D004351 Drug Resistance Diminished or failed response of an organism, disease or tissue to the intended effectiveness of a chemical or drug. It should be differentiated from DRUG TOLERANCE which is the progressive diminution of the susceptibility of a human or animal to the effects of a drug, as a result of continued administration. Resistance, Drug

Related Publications

S R Lasky, and M R Posner, and K Iwata, and A Santos-Moore, and A Yen, and V Samuel, and J Clark, and A L Maizel
February 1996, Endocrinology,
S R Lasky, and M R Posner, and K Iwata, and A Santos-Moore, and A Yen, and V Samuel, and J Clark, and A L Maizel
October 2004, Cancer genetics and cytogenetics,
S R Lasky, and M R Posner, and K Iwata, and A Santos-Moore, and A Yen, and V Samuel, and J Clark, and A L Maizel
July 2001, Internal medicine (Tokyo, Japan),
S R Lasky, and M R Posner, and K Iwata, and A Santos-Moore, and A Yen, and V Samuel, and J Clark, and A L Maizel
March 1975, Blood,
S R Lasky, and M R Posner, and K Iwata, and A Santos-Moore, and A Yen, and V Samuel, and J Clark, and A L Maizel
November 1979, Blood,
S R Lasky, and M R Posner, and K Iwata, and A Santos-Moore, and A Yen, and V Samuel, and J Clark, and A L Maizel
November 1984, Blood,
S R Lasky, and M R Posner, and K Iwata, and A Santos-Moore, and A Yen, and V Samuel, and J Clark, and A L Maizel
April 1987, Cancer research,
S R Lasky, and M R Posner, and K Iwata, and A Santos-Moore, and A Yen, and V Samuel, and J Clark, and A L Maizel
July 1988, Nihon Ketsueki Gakkai zasshi : journal of Japan Haematological Society,
S R Lasky, and M R Posner, and K Iwata, and A Santos-Moore, and A Yen, and V Samuel, and J Clark, and A L Maizel
January 1978, Vox sanguinis,
S R Lasky, and M R Posner, and K Iwata, and A Santos-Moore, and A Yen, and V Samuel, and J Clark, and A L Maizel
May 1996, Experimental cell research,
Copied contents to your clipboard!