Hypercoagulable states: molecular genetics to clinical practice. 1994

A I Schafer
Department of Medicine, Baylor College of Medicine, Houston, Texas 77030.

Several physiological antithrombotic proteins--including antithrombin, protein C, protein S, tissue factor pathway inhibitor, and components of the fibrinolytic system--act as inhibitors at strategic sites in the coagulation cascade to maintain normal blood fluidity under normal circumstances. The molecular basis of specific inherited hypercoagulable states has been recently elucidated. With the description of resistance to activated protein C, which is the commonest coagulation defect associated with thrombophilia, a specific primary hypercoagulable state can be identified in over 50% of patients with thrombophilia. Although the prevalence in the normal population of some "prothrombotic" mutations is remarkably high, most affected individuals do not have clinical thrombotic complications, so it is likely that clinically apparent hypercoagulable states result from multigene interactions, and that clinical episodes of thrombosis are precipitated by acquired prothrombotic insults in patients with an inherited predisposition to thrombosis.

UI MeSH Term Description Entries
D008967 Molecular Biology A discipline concerned with studying biological phenomena in terms of the chemical and physical interactions of molecules. Biochemical Genetics,Biology, Molecular,Genetics, Biochemical,Genetics, Molecular,Molecular Genetics,Biochemical Genetic,Genetic, Biochemical,Genetic, Molecular,Molecular Genetic
D011486 Protein C A vitamin-K dependent zymogen present in the blood, which, upon activation by thrombin and thrombomodulin exerts anticoagulant properties by inactivating factors Va and VIIIa at the rate-limiting steps of thrombin formation.
D001777 Blood Coagulation The process of the interaction of BLOOD COAGULATION FACTORS that results in an insoluble FIBRIN clot. Blood Clotting,Coagulation, Blood,Blood Clottings,Clotting, Blood
D005342 Fibrinolysis The natural enzymatic dissolution of FIBRIN. Fibrinolyses
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000991 Antithrombins Endogenous factors and drugs that directly inhibit the action of THROMBIN, usually by blocking its enzymatic activity. They are distinguished from INDIRECT THROMBIN INHIBITORS, such as HEPARIN, which act by enhancing the inhibitory effects of antithrombins. Antithrombin,Direct Antithrombin,Direct Antithrombins,Direct Thrombin Inhibitor,Direct Thrombin Inhibitors,Antithrombin, Direct,Antithrombins, Direct,Inhibitor, Direct Thrombin,Thrombin Inhibitor, Direct,Thrombin Inhibitors, Direct
D013927 Thrombosis Formation and development of a thrombus or blood clot in BLOOD VESSELS. Atherothrombosis,Thrombus,Blood Clot,Blood Clots,Thromboses
D017293 Protein S The vitamin K-dependent cofactor of activated PROTEIN C. Together with protein C, it inhibits the action of factors VIIIa and Va. A deficiency in protein S; (PROTEIN S DEFICIENCY); can lead to recurrent venous and arterial thrombosis. Vitamin K-Dependent Protein S,Cofactor Protein S,Protein S, Vitamin K-Dependent,Protein S, Cofactor,Protein S, Vitamin K Dependent,Vitamin K Dependent Protein S

Related Publications

A I Schafer
October 2018, Neurosurgery clinics of North America,
A I Schafer
February 2001, Clinics in geriatric medicine,
A I Schafer
June 1990, Journal of vascular surgery,
A I Schafer
January 1985, International anesthesiology clinics,
A I Schafer
October 2011, Critical care clinics,
A I Schafer
December 1997, Annals of internal medicine,
A I Schafer
December 1997, Annals of internal medicine,
A I Schafer
January 1990, Advances in internal medicine,
A I Schafer
February 1993, The West Virginia medical journal,
A I Schafer
April 2000, Hematology/oncology clinics of North America,
Copied contents to your clipboard!