Protection of focal ischemic infarction by rilmenidine in the animal: evidence that interactions with central imidazoline receptors may be neuroprotective. 1994

D J Reis, and S Regunathan, and E V Golanov, and D L Feinstein
Department of Neurology and Neuroscience, Cornell University Medical College, New York, New York 10021.

Rilmenidine and idazoxan reduce the volume of focal ischemic infarctions produced by occlusion of the middle cerebral artery in the rat by 33% and 29%, respectively, by preserving neurons within the ischemic penumbra. In contrast, the alpha 2-selective antagonist SKF-86466 is without effect. The neuroprotective action of rilmenidine is dose dependent and parallels its antihypertensive actions. Neuroprotection cannot be attributed to changes in cerebral blood flow. We conclude that the neuroprotection produced by rilmenidine is attributable to an interaction with imidazoline receptors (IRs). However, the mechanism of action is not obvious. If it results from an action within the penumbra (direct), it is mediated by mitochondrial I-2 receptors on astrocytes, since cortical neurons are devoid of IRs. Neuroprotection might occur by selectively stimulating Ca2+ uptake into astrocytes, and thereby reducing Ca2+ uptake into neurons. Alternatively, rilmenidine may act indirectly to activate pathways in the brain that are neuroprotective. Neuroprotection may be a therapeutic target for rilmenidine and allied agents that act at central IRs.

UI MeSH Term Description Entries
D007093 Imidazoles Compounds containing 1,3-diazole, a five membered aromatic ring containing two nitrogen atoms separated by one of the carbons. Chemically reduced ones include IMIDAZOLINES and IMIDAZOLIDINES. Distinguish from 1,2-diazole (PYRAZOLES).
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010080 Oxazoles Five-membered heterocyclic ring structures containing an oxygen in the 1-position and a nitrogen in the 3-position, in distinction from ISOXAZOLES where they are at the 1,2 positions. Oxazole,1,3-Oxazolium-5-Oxides,Munchnones,1,3 Oxazolium 5 Oxides
D011955 Receptors, Drug Proteins that bind specific drugs with high affinity and trigger intracellular changes influencing the behavior of cells. Drug receptors are generally thought to be receptors for some endogenous substance not otherwise specified. Drug Receptors,Drug Receptor,Receptor, Drug
D002544 Cerebral Infarction The formation of an area of NECROSIS in the CEREBRUM caused by an insufficiency of arterial or venous blood flow. Infarcts of the cerebrum are generally classified by hemisphere (i.e., left vs. right), lobe (e.g., frontal lobe infarction), arterial distribution (e.g., INFARCTION, ANTERIOR CEREBRAL ARTERY), and etiology (e.g., embolic infarction). Anterior Choroidal Artery Infarction,Cerebral Infarct,Infarction, Cerebral,Posterior Choroidal Artery Infarction,Subcortical Infarction,Cerebral Infarction, Left Hemisphere,Cerebral Infarction, Right Hemisphere,Cerebral, Left Hemisphere, Infarction,Cerebral, Right Hemisphere, Infarction,Infarction, Cerebral, Left Hemisphere,Infarction, Cerebral, Right Hemisphere,Infarction, Left Hemisphere, Cerebral,Infarction, Right Hemisphere, Cerebral,Left Hemisphere, Cerebral Infarction,Left Hemisphere, Infarction, Cerebral,Right Hemisphere, Cerebral Infarction,Right Hemisphere, Infarction, Cerebral,Cerebral Infarctions,Cerebral Infarcts,Infarct, Cerebral,Infarction, Subcortical,Infarctions, Cerebral,Infarctions, Subcortical,Infarcts, Cerebral,Subcortical Infarctions
D002545 Brain Ischemia Localized reduction of blood flow to brain tissue due to arterial obstruction or systemic hypoperfusion. This frequently occurs in conjunction with brain hypoxia (HYPOXIA, BRAIN). Prolonged ischemia is associated with BRAIN INFARCTION. Cerebral Ischemia,Ischemic Encephalopathy,Encephalopathy, Ischemic,Ischemia, Cerebral,Brain Ischemias,Cerebral Ischemias,Ischemia, Brain,Ischemias, Cerebral,Ischemic Encephalopathies
D004146 Dioxanes Compounds that contain the structure 1,4-dioxane.
D000077769 Rilmenidine Oxazole derivative that acts as an agonist for ALPHA-2 ADRENERGIC RECEPTORS and IMIDAZOLINE RECEPTORS. It is used in the treatment of HYPERTENSION. 2-(N-(Dicyclopropylmethyl)amino)oxazoline,2-(N-(Dicyclopropylmethyl)amino)oxazoline Phosphate Salt,Hyperium,Oxaminozoline,Rilmenidine Phosphate,S 3341,S-3341,S-3341-3,S3341,S 3341 3,S33413
D000316 Adrenergic alpha-Agonists Drugs that selectively bind to and activate alpha adrenergic receptors. Adrenergic alpha-Receptor Agonists,alpha-Adrenergic Receptor Agonists,Adrenergic alpha-Agonist,Adrenergic alpha-Receptor Agonist,Receptor Agonists, Adrenergic alpha,Receptor Agonists, alpha-Adrenergic,alpha-Adrenergic Agonist,alpha-Adrenergic Agonists,alpha-Adrenergic Receptor Agonist,Adrenergic alpha Agonist,Adrenergic alpha Agonists,Adrenergic alpha Receptor Agonist,Adrenergic alpha Receptor Agonists,Agonist, Adrenergic alpha-Receptor,Agonist, alpha-Adrenergic,Agonist, alpha-Adrenergic Receptor,Agonists, Adrenergic alpha-Receptor,Agonists, alpha-Adrenergic,Agonists, alpha-Adrenergic Receptor,Receptor Agonist, alpha-Adrenergic,Receptor Agonists, alpha Adrenergic,alpha Adrenergic Agonist,alpha Adrenergic Agonists,alpha Adrenergic Receptor Agonist,alpha Adrenergic Receptor Agonists,alpha-Agonist, Adrenergic,alpha-Agonists, Adrenergic,alpha-Receptor Agonist, Adrenergic,alpha-Receptor Agonists, Adrenergic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

D J Reis, and S Regunathan, and E V Golanov, and D L Feinstein
July 1990, British journal of pharmacology,
D J Reis, and S Regunathan, and E V Golanov, and D L Feinstein
December 1988, Journal of hypertension. Supplement : official journal of the International Society of Hypertension,
D J Reis, and S Regunathan, and E V Golanov, and D L Feinstein
July 1996, Journal of hypertension,
D J Reis, and S Regunathan, and E V Golanov, and D L Feinstein
February 1997, Journal of hypertension,
D J Reis, and S Regunathan, and E V Golanov, and D L Feinstein
June 2000, American journal of hypertension,
D J Reis, and S Regunathan, and E V Golanov, and D L Feinstein
April 1996, British journal of pharmacology,
D J Reis, and S Regunathan, and E V Golanov, and D L Feinstein
August 1994, The Journal of pharmacology and experimental therapeutics,
D J Reis, and S Regunathan, and E V Golanov, and D L Feinstein
September 1997, Arzneimittel-Forschung,
D J Reis, and S Regunathan, and E V Golanov, and D L Feinstein
September 2001, Journal of hypertension,
D J Reis, and S Regunathan, and E V Golanov, and D L Feinstein
December 1989, Archives des maladies du coeur et des vaisseaux,
Copied contents to your clipboard!