Neural modeling of the dorsal cochlear nucleus: cross-correlation analysis of short-duration tone-burst responses. 1994

K A Davis, and H F Voigt
Department of Biomedical Engineering, Boston University, MA 02215-2407.

A conceptual model of a portion of dorsal cochlear nucleus (DCN) neural circuitry has emerged over the past two decades. This model suggests that the response properties of the DCN's major projection neurons, called type IV units, are due, in part, to the behavior of local circuit inhibitory interneurons called type II units (Young and Brownell 1976). Cross-correlation studies of simultaneously recorded pairs of DCN units in decerebrate cat derived from 50-s best frequency (BF) stimuli are consistent with and have extended this conceptual model (Voigt and Young 1980, 1985, 1988, 1990). Interestingly, Gochin et al. (1989) found no signs of inhibition in the anesthetized rat DCN in cross-correlograms derived from 55-ms short-duration BF tone bursts. This seemingly contradictory result has motivated this study. Computer simulations were run using our network model of the intrinsic DCN neural circuitry. This model has previously been shown to reproduce the major features of both type II and type IV rate-level curves and the inhibitory trough (IT) observed in cross-correlograms derived from long-duration stimuli (Voigt and Davis 1994). The goal was to study the stimulus-duration-dependent strength of ITs in the cross-correlograms derived from short-duration BF tone-burst stimuli. The results suggest that ITs may not be detectable when the stimulus duration is 50 ms but may be detectable when the stimulus duration is 200 ms or greater. Furthermore, when the ITs are detected in cross-correlograms derived from 200-ms data sets, the strength of the IT, as measured by effectiveness, is comparable to the strength of ITs measured when the stimulus duration is 50 s.

UI MeSH Term Description Entries
D008959 Models, Neurological Theoretical representations that simulate the behavior or activity of the neurological system, processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Neurologic Models,Model, Neurological,Neurologic Model,Neurological Model,Neurological Models,Model, Neurologic,Models, Neurologic
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D003198 Computer Simulation Computer-based representation of physical systems and phenomena such as chemical processes. Computational Modeling,Computational Modelling,Computer Models,In silico Modeling,In silico Models,In silico Simulation,Models, Computer,Computerized Models,Computer Model,Computer Simulations,Computerized Model,In silico Model,Model, Computer,Model, Computerized,Model, In silico,Modeling, Computational,Modeling, In silico,Modelling, Computational,Simulation, Computer,Simulation, In silico,Simulations, Computer
D003655 Decerebrate State A condition characterized by abnormal posturing of the limbs that is associated with injury to the brainstem. This may occur as a clinical manifestation or induced experimentally in animals. The extensor reflexes are exaggerated leading to rigid extension of the limbs accompanied by hyperreflexia and opisthotonus. This condition is usually caused by lesions which occur in the region of the brainstem that lies between the red nuclei and the vestibular nuclei. In contrast, decorticate rigidity is characterized by flexion of the elbows and wrists with extension of the legs and feet. The causative lesion for this condition is located above the red nuclei and usually consists of diffuse cerebral damage. (From Adams et al., Principles of Neurology, 6th ed, p358) Decerebrate Posturing,Decorticate Rigidity,Decorticate State,Rigidity, Decerebrate,Rigidity, Decorticate,Decerebrate Posturings,Decerebrate Rigidity,Decerebrate States,Decorticate Rigidities,Decorticate States,Posturing, Decerebrate,Posturings, Decerebrate,Rigidities, Decorticate,State, Decerebrate,States, Decerebrate
D000161 Acoustic Stimulation Use of sound to elicit a response in the nervous system. Auditory Stimulation,Stimulation, Acoustic,Stimulation, Auditory
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D017626 Cochlear Nucleus The brain stem nucleus that receives the central input from the cochlear nerve. The cochlear nucleus is located lateral and dorsolateral to the inferior cerebellar peduncles and is functionally divided into dorsal and ventral parts. It is tonotopically organized, performs the first stage of central auditory processing, and projects (directly or indirectly) to higher auditory areas including the superior olivary nuclei, the medial geniculi, the inferior colliculi, and the auditory cortex. Cochlear Nuclei,Nuclei, Cochlear,Nucleus, Cochlear

Related Publications

K A Davis, and H F Voigt
November 1990, Journal of neurophysiology,
K A Davis, and H F Voigt
June 1992, Philosophical transactions of the Royal Society of London. Series B, Biological sciences,
K A Davis, and H F Voigt
July 1968, Journal of neurophysiology,
K A Davis, and H F Voigt
January 1991, Nihon Jibiinkoka Gakkai kaiho,
K A Davis, and H F Voigt
July 2017, Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference,
K A Davis, and H F Voigt
April 2005, The Journal of neuroscience : the official journal of the Society for Neuroscience,
K A Davis, and H F Voigt
December 2006, Annals of biomedical engineering,
Copied contents to your clipboard!