Comparison of measures of lead exposure, dose, and chelatable lead burden after provocative chelation in organolead workers. 1994

B S Schwartz, and M P McGrail, and W Stewart, and T Pluth
Department of Environmental Health Sciences, Johns Hopkins University, School of Hygiene and Public Health, Baltimore, MD 21205.

OBJECTIVE To describe 6 h urinary lead excretion (6 h PbU) after 1 g intravenous ethylene diamine tetraacetic acid (EDTA) in organolead manufacturing workers with mixed exposure to organic and inorganic lead; to determine the predictors of lead excretion (PbU); and to determine the extent to which internal lead stores and ongoing external exposure govern blood concentrations of lead (PbB). METHODS A case series of 21 active workers were studied. Personal industrial hygiene data, grouped by 29 exposure zones, in combination with personal interviews about work location and times were used to derive several measures of recent and cumulative exposure to organic and inorganic lead. The average exposure intensities assigned to the 29 zones ranged from 4 to 119 micrograms/m3 (0.02-0.57 mumol/m3 as lead) for organic lead and from 1 to 56 micrograms/m3 (0.004-0.27 mumol/m3) for inorganic lead. RESULTS After controlling for age, 6 h PbU was significantly and positively correlated with summary measures of PbB--for example, lifetime peak PbB, time weighted PbB--and zinc protoporphyrin concentrations--for example, lifetime peak zinc protoporphyrin, time weighted zinc protoporphyrin--but not with measures of estimated external exposure--for example, duration of exposure and cumulative exposure to inorganic or organic lead. Among workers with higher chelatable lead burdens (6 h PbU > or = 212.4 micrograms (1.03 mumol) divided at the median), there was no apparent relation between recent inorganic lead exposure and PbB at the time of chelation. Among workers with lower chelatable lead burdens (6 h PbU < 212.4 micrograms (1.03 mumol) however, there was a significant relation between exposure and effect between recent exposure to inorganic lead and PbBs. CONCLUSIONS These findings are consistent with the concept of physiological dampening. The high chelatable lead burden, a source of internal exposure, dampens the effect of external exposure on PbBs. The data suggest that in organolead workers with high chelatable lead burdens, PbBs may be more influenced by internal lead stores than by variations in airborne exposure to organic and inorganic lead.

UI MeSH Term Description Entries
D007854 Lead A soft, grayish metal with poisonous salts; atomic number 82, atomic weight 207.2, symbol Pb.
D008297 Male Males
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D012044 Regression Analysis Procedures for finding the mathematical function which best describes the relationship between a dependent variable and one or more independent variables. In linear regression (see LINEAR MODELS) the relationship is constrained to be a straight line and LEAST-SQUARES ANALYSIS is used to determine the best fit. In logistic regression (see LOGISTIC MODELS) the dependent variable is qualitative rather than continuously variable and LIKELIHOOD FUNCTIONS are used to find the best relationship. In multiple regression, the dependent variable is considered to depend on more than a single independent variable. Regression Diagnostics,Statistical Regression,Analysis, Regression,Analyses, Regression,Diagnostics, Regression,Regression Analyses,Regression, Statistical,Regressions, Statistical,Statistical Regressions
D001822 Body Burden The total amount of a chemical, metal or radioactive substance present at any time after absorption in the body of man or animal. Body Burdens,Burden, Body,Burdens, Body
D002617 Chemical Industry The aggregate enterprise of manufacturing and technically producing chemicals. (From Random House Unabridged Dictionary, 2d ed) Industry, Chemical,Chemical Industries,Industries, Chemical
D004492 Edetic Acid A chelating agent that sequesters a variety of polyvalent cations such as CALCIUM. It is used in pharmaceutical manufacturing and as a food additive. EDTA,Edathamil,Edetates,Ethylenediaminetetraacetic Acid,Tetracemate,Calcium Disodium Edetate,Calcium Disodium Versenate,Calcium Tetacine,Chelaton 3,Chromium EDTA,Copper EDTA,Coprin,Dicobalt EDTA,Disodium Calcitetracemate,Disodium EDTA,Disodium Ethylene Dinitrilotetraacetate,Distannous EDTA,Edetate Disodium Calcium,Edetic Acid, Calcium Salt,Edetic Acid, Calcium, Sodium Salt,Edetic Acid, Chromium Salt,Edetic Acid, Dipotassium Salt,Edetic Acid, Disodium Salt,Edetic Acid, Disodium Salt, Dihydrate,Edetic Acid, Disodium, Magnesium Salt,Edetic Acid, Disodium, Monopotassium Salt,Edetic Acid, Magnesium Salt,Edetic Acid, Monopotassium Salt,Edetic Acid, Monosodium Salt,Edetic Acid, Potassium Salt,Edetic Acid, Sodium Salt,Ethylene Dinitrilotetraacetate,Ethylenedinitrilotetraacetic Acid,Gallium EDTA,Magnesium Disodium EDTA,N,N'-1,2-Ethanediylbis(N-(carboxymethyl)glycine),Potassium EDTA,Stannous EDTA,Versenate,Versene,Acid, Edetic,Acid, Ethylenediaminetetraacetic,Acid, Ethylenedinitrilotetraacetic,Calcitetracemate, Disodium,Dinitrilotetraacetate, Disodium Ethylene,Dinitrilotetraacetate, Ethylene,Disodium Versenate, Calcium,EDTA, Chromium,EDTA, Copper,EDTA, Dicobalt,EDTA, Disodium,EDTA, Distannous,EDTA, Gallium,EDTA, Magnesium Disodium,EDTA, Potassium,EDTA, Stannous,Edetate, Calcium Disodium,Ethylene Dinitrilotetraacetate, Disodium,Tetacine, Calcium,Versenate, Calcium Disodium
D004784 Environmental Monitoring The monitoring of the level of toxins, chemical pollutants, microbial contaminants, or other harmful substances in the environment (soil, air, and water), workplace, or in the bodies of people and animals present in that environment. Monitoring, Environmental,Environmental Surveillance,Surveillance, Environmental
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

B S Schwartz, and M P McGrail, and W Stewart, and T Pluth
January 1999, Occupational and environmental medicine,
B S Schwartz, and M P McGrail, and W Stewart, and T Pluth
March 2001, American journal of industrial medicine,
B S Schwartz, and M P McGrail, and W Stewart, and T Pluth
May 1999, Neurology,
B S Schwartz, and M P McGrail, and W Stewart, and T Pluth
April 1993, The Western journal of medicine,
B S Schwartz, and M P McGrail, and W Stewart, and T Pluth
May 1988, Journal of occupational medicine. : official publication of the Industrial Medical Association,
B S Schwartz, and M P McGrail, and W Stewart, and T Pluth
February 1983, Journal of applied toxicology : JAT,
B S Schwartz, and M P McGrail, and W Stewart, and T Pluth
May 1982, British journal of industrial medicine,
B S Schwartz, and M P McGrail, and W Stewart, and T Pluth
January 1986, Industrial health,
B S Schwartz, and M P McGrail, and W Stewart, and T Pluth
November 1997, American journal of industrial medicine,
Copied contents to your clipboard!