Exercise O2 transport model assuming zero cytochrome PO2 at VO2 max. 1994

J W Severinghaus
Cardiovascular Research Institute, San Francisco, California 94143.

An analogy is drawn between cytochrome aa3 function and a polarographic cathode at which the potential of -0.6 V captures all O2 diffusing to the surface, achieving maximal O2 consumption (VO2max) by eliminating O2 backpressure and outward diffusion from the surface, defined herein as zero surface PO2. The relationship of O2 consumption (as %VO2max) to muscle venous, myoglobin, and cytochrome PO2 is modeled assuming that cytochrome aa3 PO2 reaches zero at VO2max, incorporating published data on the profile of leg venous PO2, pH, and blood lactate vs. work. Equations describe hemoglobin and myoglobin O2 dissociation and the Bohr effect of acid on O2 unloading. The O2 gradient from capillary blood to cytochrome aa3 is assumed to be proportional to O2 consumption. The model suggests that 1) to extract 75% of the O2 from myoglobin at VO2max, myoglobin must lie 90% down the O2 gradient from capillary to cytochrome; 2) the Bohr effect adds 15-30% to VO2max and keeps venous PO2 almost constant as work rises from 60 to 100% of VO2max; and 3) in steady heavy work, the rising arterial lactate may impede lactate excretion from muscle, reduce anaerobic ATP generation, and shift the energy balance toward aerobic metabolism. The zero PO2 hypothesis facilitates modeling and may be the key to understanding the physiological limitation of work.

UI MeSH Term Description Entries
D007773 Lactates Salts or esters of LACTIC ACID containing the general formula CH3CHOHCOOR.
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D009211 Myoglobin A conjugated protein which is the oxygen-transporting pigment of muscle. It is made up of one globin polypeptide chain and one heme group.
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D010313 Partial Pressure The pressure that would be exerted by one component of a mixture of gases if it were present alone in a container. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Partial Pressures,Pressure, Partial,Pressures, Partial
D011773 Pyruvates Derivatives of PYRUVIC ACID, including its salts and esters.
D012039 Regional Blood Flow The flow of BLOOD through or around an organ or region of the body. Blood Flow, Regional,Blood Flows, Regional,Flow, Regional Blood,Flows, Regional Blood,Regional Blood Flows
D003580 Cytochromes Hemeproteins whose characteristic mode of action involves transfer of reducing equivalents which are associated with a reversible change in oxidation state of the prosthetic group. Formally, this redox change involves a single-electron, reversible equilibrium between the Fe(II) and Fe(III) states of the central iron atom (From Enzyme Nomenclature, 1992, p539). The various cytochrome subclasses are organized by the type of HEME and by the wavelength range of their reduced alpha-absorption bands. Cytochrome
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations

Related Publications

J W Severinghaus
March 1999, Journal of applied physiology (Bethesda, Md. : 1985),
J W Severinghaus
January 2013, Revue de l'infirmiere,
J W Severinghaus
August 1986, International journal of sports medicine,
J W Severinghaus
November 1993, The Annals of physiological anthropology = Seiri Jinruigaku Kenkyukai kaishi,
J W Severinghaus
March 1998, Journal of applied physiology (Bethesda, Md. : 1985),
J W Severinghaus
September 1993, Research quarterly for exercise and sport,
J W Severinghaus
March 2006, Respirology (Carlton, Vic.),
J W Severinghaus
August 1979, Archives internationales de physiologie et de biochimie,
Copied contents to your clipboard!