Microbial transformations of steroids--VIII. Transformation of progesterone by whole cells and microsomes of Aspergillus fumigatus. 1994

K E Smith, and F Ahmed, and R A Williams, and S L Kelly
Department of Biochemistry, Queen Mary and Westfield College, London, England.

The filamentous fungus, Aspergillus fumigatus, efficiently hydroxylated exogenous progesterone producing, after 3 h of incubation, 11 alpha- and 15 beta-hydroxyprogesterone as major products, 7 beta-hydroxyprogesterone as a minor product and trace amounts of 7 beta, 15 beta- and 11 alpha, 15 beta-dihydroxyprogesterone. After 72 h the dihydroxyprogesterones were the sole metabolites in the culture medium. Microsomes, prepared by Ca2+ precipitation, catalysed only monohydroxylation of progesterone at the same sites as whole cells. Hydroxylation was dependent on NADPH (but not NADH) which was replaceable by NaIO4. Hydroxylation was inhibited by carbon monoxide and by the azole fungicide, ketoconazole. Microsomes gave a dithionite-reduced, carbon monoxide difference absorbance spectrum with a peak at 448 nm and a Type-I progesterone-binding spectrum typical of cytochrome P450 interaction with substrate. Ketoconazole inhibition studies suggest the presence of two non-inducible cytochrome P450 progesterone hydroxylases, one possessing 7 beta site-selectivity, the other 11 alpha/15 beta site-selectivity.

UI MeSH Term Description Entries
D007452 Iodates Inorganic salts of iodic acid (HIO3). Iodate
D007654 Ketoconazole Broad spectrum antifungal agent used for long periods at high doses, especially in immunosuppressed patients. Nizoral,R-41400,R41,400,R41400,R 41400
D008861 Microsomes Artifactual vesicles formed from the endoplasmic reticulum when cells are disrupted. They are isolated by differential centrifugation and are composed of three structural features: rough vesicles, smooth vesicles, and ribosomes. Numerous enzyme activities are associated with the microsomal fraction. (Glick, Glossary of Biochemistry and Molecular Biology, 1990; from Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) Microsome
D009249 NADP Nicotinamide adenine dinucleotide phosphate. A coenzyme composed of ribosylnicotinamide 5'-phosphate (NMN) coupled by pyrophosphate linkage to the 5'-phosphate adenosine 2',5'-bisphosphate. It serves as an electron carrier in a number of reactions, being alternately oxidized (NADP+) and reduced (NADPH). (Dorland, 27th ed) Coenzyme II,Nicotinamide-Adenine Dinucleotide Phosphate,Triphosphopyridine Nucleotide,NADPH,Dinucleotide Phosphate, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide Phosphate,Nucleotide, Triphosphopyridine,Phosphate, Nicotinamide-Adenine Dinucleotide
D011374 Progesterone The major progestational steroid that is secreted primarily by the CORPUS LUTEUM and the PLACENTA. Progesterone acts on the UTERUS, the MAMMARY GLANDS and the BRAIN. It is required in EMBRYO IMPLANTATION; PREGNANCY maintenance, and the development of mammary tissue for MILK production. Progesterone, converted from PREGNENOLONE, also serves as an intermediate in the biosynthesis of GONADAL STEROID HORMONES and adrenal CORTICOSTEROIDS. Pregnenedione,Progesterone, (13 alpha,17 alpha)-(+-)-Isomer,Progesterone, (17 alpha)-Isomer,Progesterone, (9 beta,10 alpha)-Isomer
D002248 Carbon Monoxide Carbon monoxide (CO). A poisonous colorless, odorless, tasteless gas. It combines with hemoglobin to form carboxyhemoglobin, which has no oxygen carrying capacity. The resultant oxygen deprivation causes headache, dizziness, decreased pulse and respiratory rates, unconsciousness, and death. (From Merck Index, 11th ed) Monoxide, Carbon
D003513 Cycloheximide Antibiotic substance isolated from streptomycin-producing strains of Streptomyces griseus. It acts by inhibiting elongation during protein synthesis. Actidione,Cicloheximide
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D006908 Hydroxyprogesterones Metabolites or derivatives of PROGESTERONE with hydroxyl group substitution at various sites.
D001232 Aspergillus fumigatus A species of imperfect fungi from which the antibiotic fumigatin is obtained. Its spores may cause respiratory infection in birds and mammals. Aspergillus fumigates,Neosartorya fumigata,Sartorya fumigata

Related Publications

K E Smith, and F Ahmed, and R A Williams, and S L Kelly
November 1989, Journal of steroid biochemistry,
K E Smith, and F Ahmed, and R A Williams, and S L Kelly
July 1989, Journal of steroid biochemistry,
K E Smith, and F Ahmed, and R A Williams, and S L Kelly
September 1984, Journal of steroid biochemistry,
K E Smith, and F Ahmed, and R A Williams, and S L Kelly
March 1989, Journal of steroid biochemistry,
K E Smith, and F Ahmed, and R A Williams, and S L Kelly
March 1965, The Journal of organic chemistry,
K E Smith, and F Ahmed, and R A Williams, and S L Kelly
July 1988, Journal of steroid biochemistry,
K E Smith, and F Ahmed, and R A Williams, and S L Kelly
December 1999, The Journal of steroid biochemistry and molecular biology,
K E Smith, and F Ahmed, and R A Williams, and S L Kelly
October 1982, Journal of steroid biochemistry,
K E Smith, and F Ahmed, and R A Williams, and S L Kelly
January 1990, Journal of steroid biochemistry,
Copied contents to your clipboard!