ATP-stimulated electrolyte and mucin secretion in the human intestinal goblet cell line HT29-Cl.16E. 1994

D Merlin, and C Augeron, and X Y Tien, and X Guo, and C L Laboisse, and U Hopfer
Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4970.

The response of confluent monolayers of HT29-Cl.16E cells to stimulation by extracellular ATP and ATP analogues was investigated in terms of mucin and electrolyte secretion. Mucin secretion was measured as release of glucosamine-labeled macromolecules trapped at the stacking/running gel interface of polyacrylamide gels and electrolyte secretion as short-circuit current (Isc). Luminal ATP stimulated a transient increase in the release of mucins and of Isc corresponding to a secretory Cl- current. Both secretions peaked at 3 to 5 min after addition of ATP. Maximal ATP-stimulated mucin secretion over 15 min was up to 18-fold above control with an apparent ED50 of approximately 40 microM. Maximal peak Isc after stimulation with ATP was approximately 35 microA/cm2 with an apparent ED50 of about 0.4 mM. ATP-dependent Isc was at least in part due to Cl- secretion since removal of Cl- from the medium reduced the peak Isc by 40% and the Isc integrated over 40 min by 80%. The secretory responses were not associated with cell damage as assessed by failure of ethidium bromide to enter into the cells, absence of release of lactate dehydrogenase, maintenance of monolayer conductance, viability, and responses to repeated applications of ATP. The order of efficacy of nucleotide agonists was similar for both processes with ATP > ADP > AMP > or = adenosine. Luminal ATP was much more effective than basolateral addition of this compound. These results suggest involvement of a luminal P2-type receptor which can initiate signaling pathways for granule fusion and mucin release as well as for activation of Cl- channels. P2-receptor-stimulated mucin and Isc release was strongly inhibited by a 30 min preincubation with the classical K+ channel blockers quinine (1 mM), quinidine (1 mM), and Ba2+ (3 mM). Experiments with amphotericin B to measure separately the conductance changes of either luminal or basolateral plasma membrane revealed that quinidine did not directly block the ATP-induced basolateral K+ or the luminal anion channels. The quinidine inhibition after preincubation is therefore most easily explained by interference with granule fusion and location of anion channels in granule membranes. Luminal P2 receptors may play a role in intestinal defense mechanisms with both fluid and mucin secretion aiding in the removal of noxious agents from the mucosal surface.

UI MeSH Term Description Entries
D007413 Intestinal Mucosa Lining of the INTESTINES, consisting of an inner EPITHELIUM, a middle LAMINA PROPRIA, and an outer MUSCULARIS MUCOSAE. In the SMALL INTESTINE, the mucosa is characterized by a series of folds and abundance of absorptive cells (ENTEROCYTES) with MICROVILLI. Intestinal Epithelium,Intestinal Glands,Epithelium, Intestinal,Gland, Intestinal,Glands, Intestinal,Intestinal Gland,Mucosa, Intestinal
D009077 Mucins High molecular weight mucoproteins that protect the surface of EPITHELIAL CELLS by providing a barrier to particulate matter and microorganisms. Membrane-anchored mucins may have additional roles concerned with protein interactions at the cell surface. Mucin
D011802 Quinidine An optical isomer of quinine, extracted from the bark of the CHINCHONA tree and similar plant species. This alkaloid dampens the excitability of cardiac and skeletal muscles by blocking sodium and potassium currents across cellular membranes. It prolongs cellular ACTION POTENTIALS, and decreases automaticity. Quinidine also blocks muscarinic and alpha-adrenergic neurotransmission. Adaquin,Apo-Quinidine,Chinidin,Quincardine,Quinidex,Quinidine Sulfate,Quinora,Apo Quinidine,Sulfate, Quinidine
D011803 Quinine An alkaloid derived from the bark of the cinchona tree. It is used as an antimalarial drug, and is the active ingredient in extracts of the cinchona that have been used for that purpose since before 1633. Quinine is also a mild antipyretic and analgesic and has been used in common cold preparations for that purpose. It was used commonly and as a bitter and flavoring agent, and is still useful for the treatment of babesiosis. Quinine is also useful in some muscular disorders, especially nocturnal leg cramps and myotonia congenita, because of its direct effects on muscle membrane and sodium channels. The mechanisms of its antimalarial effects are not well understood. Biquinate,Legatrim,Myoquin,Quinamm,Quinbisan,Quinbisul,Quindan,Quinimax,Quinine Bisulfate,Quinine Hydrochloride,Quinine Lafran,Quinine Sulfate,Quinine Sulphate,Quinine-Odan,Quinoctal,Quinson,Quinsul,Strema,Surquina,Bisulfate, Quinine,Hydrochloride, Quinine,Sulfate, Quinine,Sulphate, Quinine
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002712 Chlorides Inorganic compounds derived from hydrochloric acid that contain the Cl- ion. Chloride,Chloride Ion Level,Ion Level, Chloride,Level, Chloride Ion
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000241 Adenosine A nucleoside that is composed of ADENINE and D-RIBOSE. Adenosine or adenosine derivatives play many important biological roles in addition to being components of DNA and RNA. Adenosine itself is a neurotransmitter. Adenocard,Adenoscan
D000244 Adenosine Diphosphate Adenosine 5'-(trihydrogen diphosphate). An adenine nucleotide containing two phosphate groups esterified to the sugar moiety at the 5'-position. ADP,Adenosine Pyrophosphate,Magnesium ADP,MgADP,Adenosine 5'-Pyrophosphate,5'-Pyrophosphate, Adenosine,ADP, Magnesium,Adenosine 5' Pyrophosphate,Diphosphate, Adenosine,Pyrophosphate, Adenosine
D000249 Adenosine Monophosphate Adenine nucleotide containing one phosphate group esterified to the sugar moiety in the 2'-, 3'-, or 5'-position. AMP,Adenylic Acid,2'-AMP,2'-Adenosine Monophosphate,2'-Adenylic Acid,5'-Adenylic Acid,Adenosine 2'-Phosphate,Adenosine 3'-Phosphate,Adenosine 5'-Phosphate,Adenosine Phosphate Dipotassium,Adenosine Phosphate Disodium,Phosphaden,2' Adenosine Monophosphate,2' Adenylic Acid,5' Adenylic Acid,5'-Phosphate, Adenosine,Acid, 2'-Adenylic,Acid, 5'-Adenylic,Adenosine 2' Phosphate,Adenosine 3' Phosphate,Adenosine 5' Phosphate,Dipotassium, Adenosine Phosphate,Disodium, Adenosine Phosphate,Monophosphate, 2'-Adenosine,Phosphate Dipotassium, Adenosine,Phosphate Disodium, Adenosine

Related Publications

D Merlin, and C Augeron, and X Y Tien, and X Guo, and C L Laboisse, and U Hopfer
June 1995, The American journal of physiology,
D Merlin, and C Augeron, and X Y Tien, and X Guo, and C L Laboisse, and U Hopfer
February 1997, The Journal of membrane biology,
D Merlin, and C Augeron, and X Y Tien, and X Guo, and C L Laboisse, and U Hopfer
December 1994, The Biochemical journal,
D Merlin, and C Augeron, and X Y Tien, and X Guo, and C L Laboisse, and U Hopfer
August 1976, Canadian journal of biochemistry,
D Merlin, and C Augeron, and X Y Tien, and X Guo, and C L Laboisse, and U Hopfer
March 1992, The American journal of physiology,
D Merlin, and C Augeron, and X Y Tien, and X Guo, and C L Laboisse, and U Hopfer
October 1994, Agents and actions,
D Merlin, and C Augeron, and X Y Tien, and X Guo, and C L Laboisse, and U Hopfer
January 2008, Annual review of physiology,
D Merlin, and C Augeron, and X Y Tien, and X Guo, and C L Laboisse, and U Hopfer
June 1993, Pharmaceutical research,
D Merlin, and C Augeron, and X Y Tien, and X Guo, and C L Laboisse, and U Hopfer
March 1989, The American journal of physiology,
D Merlin, and C Augeron, and X Y Tien, and X Guo, and C L Laboisse, and U Hopfer
December 1977, Analytical biochemistry,
Copied contents to your clipboard!