Strategies in high-level expression of recombinant protein in Escherichia coli. 1994

K Y San, and G N Bennett, and A A Aristidou, and C H Chou
Department of Chemical Engineering, Rice University Houston, TX 77251-1892.

The accumulation of acetate is one of the most commonly encountered problems in attaining high levels of recombinant protein production using E. coli. Two different approaches are examined to reduce the rate of acetate formation. The effects of reduced acetate accumulation on recombinant protein production were also investigated. In the first approach, E. coli mutant strains deficient in enzymes involved in the acetate synthesis pathways were isolated and characterized. The level of specific production of beta-galactosidase by the mutant strain is three times higher than its parent strain. In another approach, metabolic engineering techniques were employed to fine-tune the central metabolic pathways to reduce the amount of acetate formation. The resulting strain, which carries the acetolactase synthase gene from B. subtilis, is successful in maintaining a very low level of acetate accumulation. The ALS-containing strain is also capable of producing higher levels of recombinant protein than its parent strain.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005463 Fluoroacetates Derivatives of acetic acid with one or more fluorines attached. They are almost odorless, difficult to detect chemically, and very stable. The acid itself, as well as the derivatives that are broken down in the body to the acid, are highly toxic substances, behaving as convulsant poisons with a delayed action. (From Miall's Dictionary of Chemistry, 5th ed)
D005818 Genetic Engineering Directed modification of the gene complement of a living organism by such techniques as altering the DNA, substituting genetic material by means of a virus, transplanting whole nuclei, transplanting cell hybrids, etc. Genetic Intervention,Engineering, Genetic,Intervention, Genetic,Genetic Interventions,Interventions, Genetic
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D000085 Acetates Derivatives of ACETIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the carboxymethane structure. Acetate,Acetic Acid Esters,Acetic Acids,Acids, Acetic,Esters, Acetic Acid
D000095 Acetolactate Synthase A flavoprotein enzyme that catalyzes the formation of acetolactate from 2 moles of PYRUVATE in the biosynthesis of VALINE and the formation of acetohydroxybutyrate from pyruvate and alpha-ketobutyrate in the biosynthesis of ISOLEUCINE. This enzyme was formerly listed as EC 4.1.3.18. Acetohydroxy Acid Synthase,Acetohydroxy Acid Synthetase,Acetolactate Synthetase,Acetohydroxyacid Synthetase I,Acetoxyhydroxyacid Synthase III,Acid Synthase, Acetohydroxy,Acid Synthetase, Acetohydroxy,Synthase III, Acetoxyhydroxyacid,Synthase, Acetohydroxy Acid,Synthase, Acetolactate,Synthetase I, Acetohydroxyacid,Synthetase, Acetohydroxy Acid,Synthetase, Acetolactate
D001412 Bacillus subtilis A species of gram-positive bacteria that is a common soil and water saprophyte. Natto Bacteria,Bacillus subtilis (natto),Bacillus subtilis subsp. natto,Bacillus subtilis var. natto

Related Publications

K Y San, and G N Bennett, and A A Aristidou, and C H Chou
January 1992, Chinese journal of biotechnology,
K Y San, and G N Bennett, and A A Aristidou, and C H Chou
May 1995, Journal of bacteriology,
K Y San, and G N Bennett, and A A Aristidou, and C H Chou
January 2005, Journal of biotechnology,
K Y San, and G N Bennett, and A A Aristidou, and C H Chou
September 1996, Microbiological reviews,
K Y San, and G N Bennett, and A A Aristidou, and C H Chou
October 1999, Current opinion in biotechnology,
K Y San, and G N Bennett, and A A Aristidou, and C H Chou
September 2015, BMC biotechnology,
K Y San, and G N Bennett, and A A Aristidou, and C H Chou
September 2005, Journal of biotechnology,
K Y San, and G N Bennett, and A A Aristidou, and C H Chou
February 2010, BMC biotechnology,
K Y San, and G N Bennett, and A A Aristidou, and C H Chou
April 2002, Protein expression and purification,
K Y San, and G N Bennett, and A A Aristidou, and C H Chou
June 2003, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences,
Copied contents to your clipboard!