Regulation of membrane cholesterol domains by sterol carrier protein-2. 1994

I Hapala, and J Kavecansky, and P Butko, and T J Scallen, and C H Joiner, and F Schroeder
Institute of Animal Biochemistry and Genetics, Slovak Academy of Science, Ivanka Pri Dunaji.

Sterols are not randomly distributed in membranes but appear to be localized in multiple kinetic domains. Factors that regulate these sterol domains are not well-understood. A recently developed fluorescence polarization assay that measures molecular sterol transfer [Butko, P., Hapala, I., Nemecz, G., of Schroeder, F. (1992) J. Biochem. Biophys. Methods 24, 15-37] was used to examine the mechanism whereby anionic phospholipids and liver sterol carrier protein-2 (SCP2) enhance sterol transfer. Two exchangeable and one very slowly or nonexchangeable sterol domain were resolved in phosphatidylcholine (POPC)/sterol small unilamellar vesicles (SUV). Inclusion of 10 mol % anionic phospholipids enhanced sterol exchange primarily by redistribution of sterol domain sizes rather than by alteration of half-times of exchange. This effect was dependent primarily on the percent content rather than the net charge per anionic phospholipid. In contrast, SCP2 simultaneously altered both the distribution of sterol molecules between kinetic domains and the exchange half-times of exchangeable sterol domains. The effects of SCP2 were much more pronounced when 10% acidic phospholipid was incorporated in the SUV. Compared to spontaneous sterol exchange, in the presence of 1.5 microM SCP2, the rapidly exchanging pool was increased by 36 to 330%, depending on the SUV phospholipid composition. Concomitantly, exchange half-times for rapidly and slowly exchangeable sterol were reduced by 60 to 98% for 1t1/2 and 14 to 85% for 2t1/2, respectively. The stimulatory effect of SCP2 was saturable and dependent both on protein concentration and on content of acidic phospholipids in membranes.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008081 Liposomes Artificial, single or multilaminar vesicles (made from lecithins or other lipids) that are used for the delivery of a variety of biological molecules or molecular complexes to cells, for example, drug delivery and gene transfer. They are also used to study membranes and membrane proteins. Niosomes,Transferosomes,Ultradeformable Liposomes,Liposomes, Ultra-deformable,Liposome,Liposome, Ultra-deformable,Liposome, Ultradeformable,Liposomes, Ultra deformable,Liposomes, Ultradeformable,Niosome,Transferosome,Ultra-deformable Liposome,Ultra-deformable Liposomes,Ultradeformable Liposome
D008563 Membrane Lipids Lipids, predominantly phospholipids, cholesterol and small amounts of glycolipids found in membranes including cellular and intracellular membranes. These lipids may be arranged in bilayers in the membranes with integral proteins between the layers and peripheral proteins attached to the outside. Membrane lipids are required for active transport, several enzymatic activities and membrane formation. Cell Membrane Lipid,Cell Membrane Lipids,Membrane Lipid,Lipid, Cell Membrane,Lipid, Membrane,Lipids, Cell Membrane,Lipids, Membrane,Membrane Lipid, Cell,Membrane Lipids, Cell
D009363 Neoplasm Proteins Proteins whose abnormal expression (gain or loss) are associated with the development, growth, or progression of NEOPLASMS. Some neoplasm proteins are tumor antigens (ANTIGENS, NEOPLASM), i.e. they induce an immune reaction to their tumor. Many neoplasm proteins have been characterized and are used as tumor markers (BIOMARKERS, TUMOR) when they are detectable in cells and body fluids as monitors for the presence or growth of tumors. Abnormal expression of ONCOGENE PROTEINS is involved in neoplastic transformation, whereas the loss of expression of TUMOR SUPPRESSOR PROTEINS is involved with the loss of growth control and progression of the neoplasm. Proteins, Neoplasm
D010713 Phosphatidylcholines Derivatives of PHOSPHATIDIC ACIDS in which the phosphoric acid is bound in ester linkage to a CHOLINE moiety. Choline Phosphoglycerides,Choline Glycerophospholipids,Phosphatidyl Choline,Phosphatidyl Cholines,Phosphatidylcholine,Choline, Phosphatidyl,Cholines, Phosphatidyl,Glycerophospholipids, Choline,Phosphoglycerides, Choline
D010718 Phosphatidylserines Derivatives of PHOSPHATIDIC ACIDS in which the phosphoric acid is bound in ester linkage to a SERINE moiety. Serine Phosphoglycerides,Phosphatidyl Serine,Phosphatidyl Serines,Phosphatidylserine,Phosphoglycerides, Serine,Serine, Phosphatidyl,Serines, Phosphatidyl
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D010940 Plant Proteins Proteins found in plants (flowers, herbs, shrubs, trees, etc.). The concept does not include proteins found in vegetables for which PLANT PROTEINS, DIETARY is available. Plant Protein,Protein, Plant,Proteins, Plant
D011189 Potassium Chloride A white crystal or crystalline powder used in BUFFERS; FERTILIZERS; and EXPLOSIVES. It can be used to replenish ELECTROLYTES and restore WATER-ELECTROLYTE BALANCE in treating HYPOKALEMIA. Slow-K,Chloride, Potassium
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier

Related Publications

I Hapala, and J Kavecansky, and P Butko, and T J Scallen, and C H Joiner, and F Schroeder
September 1996, Journal of lipid research,
I Hapala, and J Kavecansky, and P Butko, and T J Scallen, and C H Joiner, and F Schroeder
January 2010, Sub-cellular biochemistry,
I Hapala, and J Kavecansky, and P Butko, and T J Scallen, and C H Joiner, and F Schroeder
May 1995, Chemistry and physics of lipids,
I Hapala, and J Kavecansky, and P Butko, and T J Scallen, and C H Joiner, and F Schroeder
May 2001, Biochemistry,
I Hapala, and J Kavecansky, and P Butko, and T J Scallen, and C H Joiner, and F Schroeder
November 1992, Biochemical Society transactions,
I Hapala, and J Kavecansky, and P Butko, and T J Scallen, and C H Joiner, and F Schroeder
September 1995, Lipids,
I Hapala, and J Kavecansky, and P Butko, and T J Scallen, and C H Joiner, and F Schroeder
January 2015, Methods in molecular biology (Clifton, N.J.),
I Hapala, and J Kavecansky, and P Butko, and T J Scallen, and C H Joiner, and F Schroeder
June 2000, Biochimica et biophysica acta,
I Hapala, and J Kavecansky, and P Butko, and T J Scallen, and C H Joiner, and F Schroeder
October 2002, Molecular and cellular biochemistry,
I Hapala, and J Kavecansky, and P Butko, and T J Scallen, and C H Joiner, and F Schroeder
January 1987, The International journal of biochemistry,
Copied contents to your clipboard!