The effect of oral N-acetylcysteine on lung glutathione levels in idiopathic pulmonary fibrosis. 1994

A Meyer, and R Buhl, and H Magnussen
Zentrum für Pneumologie und Thoraxchirurgie, Krankenhaus Grosshansdorf der LVA Hamburg, Germany.

Idiopathic pulmonary fibrosis (IPF) is characterized by an increased oxidant burden and by a deficiency of glutathione, a major antioxidant, in the lung epithelial lining fluid (ELF). Therefore, a rational therapeutic approach is to reverse the imbalance between oxidants and antioxidants in the lung by enhancing the antioxidant screen. With this background, the aim of our study was to evaluate oral N-acetylcysteine (NAC) as a strategy to augment lung glutathione levels in patients with IPF. Concentrations of total glutathione in bronchoalveolar lavage fluid (BALF) were quantified spectrophotometrically, before and following oral therapy with 3 x 600 mg NAC per day for 5 days, in 17 nonsmoking patients with biopsy-proven IPF. The volume of ELF recovered by BAL was determined using the urea method. Pretherapy, total glutathione levels in ELF in IPF patients were significantly less than normal (187 +/- 36 vs 368 +/- 60 microM), in contrast to levels in BALF (0.99 +/- 0.12 vs 1.18 +/- 0.19 microM). Following therapy with oral NAC, glutathione levels in BALF were 1.54 +/- 0.24 microM (a significant increase compared to pretherapy), whereas the increase in ELF levels (319 +/- 92 microM) did not reach significance. The therapy was well-tolerated, and all routine clinical and bronchoscopic parameters remained unchanged. It is thus feasible and safe to augment deficient lung glutathione levels in patients with IPF; thereby, potentially augmenting pulmonary antioxidant protection.

UI MeSH Term Description Entries
D008168 Lung Either of the pair of organs occupying the cavity of the thorax that effect the aeration of the blood. Lungs
D008297 Male Males
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D011658 Pulmonary Fibrosis A process in which normal lung tissues are progressively replaced by FIBROBLASTS and COLLAGEN causing an irreversible loss of the ability to transfer oxygen into the bloodstream via PULMONARY ALVEOLI. Patients show progressive DYSPNEA finally resulting in death. Alveolitis, Fibrosing,Idiopathic Diffuse Interstitial Pulmonary Fibrosis,Fibroses, Pulmonary,Fibrosis, Pulmonary,Pulmonary Fibroses,Alveolitides, Fibrosing,Fibrosing Alveolitides,Fibrosing Alveolitis
D001992 Bronchoalveolar Lavage Fluid Washing liquid obtained from irrigation of the lung, including the BRONCHI and the PULMONARY ALVEOLI. It is generally used to assess biochemical, inflammatory, or infection status of the lung. Alveolar Lavage Fluid,Bronchial Lavage Fluid,Lung Lavage Fluid,Bronchial Alveolar Lavage Fluid,Lavage Fluid, Bronchial,Lavage Fluid, Lung,Pulmonary Lavage Fluid,Alveolar Lavage Fluids,Bronchial Lavage Fluids,Bronchoalveolar Lavage Fluids,Lavage Fluid, Alveolar,Lavage Fluid, Bronchoalveolar,Lavage Fluid, Pulmonary,Lavage Fluids, Alveolar,Lavage Fluids, Bronchial,Lavage Fluids, Bronchoalveolar,Lavage Fluids, Lung,Lavage Fluids, Pulmonary,Lung Lavage Fluids,Pulmonary Lavage Fluids
D004848 Epithelium The layers of EPITHELIAL CELLS which cover the inner and outer surfaces of the cutaneous, mucus, and serous tissues and glands of the body. Mesothelium,Epithelial Tissue,Mesothelial Tissue,Epithelial Tissues,Mesothelial Tissues,Tissue, Epithelial,Tissue, Mesothelial,Tissues, Epithelial,Tissues, Mesothelial
D005260 Female Females
D005978 Glutathione A tripeptide with many roles in cells. It conjugates to drugs to make them more soluble for excretion, is a cofactor for some enzymes, is involved in protein disulfide bond rearrangement and reduces peroxides. Reduced Glutathione,gamma-L-Glu-L-Cys-Gly,gamma-L-Glutamyl-L-Cysteinylglycine,Glutathione, Reduced,gamma L Glu L Cys Gly,gamma L Glutamyl L Cysteinylglycine
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000111 Acetylcysteine The N-acetyl derivative of CYSTEINE. It is used as a mucolytic agent to reduce the viscosity of mucous secretions. It has also been shown to have antiviral effects in patients with HIV due to inhibition of viral stimulation by reactive oxygen intermediates. Mercapturic Acid,Acemuc,Acetabs,Acetylcystein AL,Acetylcystein Atid,Acetylcystein Heumann,Acetylcystein Trom,Acetylcysteine Hydrochloride,Acetylcysteine Sodium,Acetylcysteine Zinc,Acetylcysteine, (D)-Isomer,Acetylcysteine, (DL)-Isomer,Acetylcysteine, Monoammonium Salt,Acetylcysteine, Monosodium Salt,Acetylin,Acetyst,Acétylcystéine GNR,Airbron,Alveolex,Azubronchin,Bisolvon NAC,Bromuc,Broncho-Fips,Broncholysin,Broncoclar,Codotussyl,Cystamucil,Dampo Mucopect,Eurespiran,Exomuc,Fabrol,Fluimucil,Fluprowit,Frekatuss,Genac,Hoestil,Ilube,Jenacystein,Jenapharm,Lantamed,Larylin NAC,Lindocetyl,M-Pectil,Muciteran,Muco Sanigen,Mucomyst,Mucosil,Mucosol,Mucosolvin,N-Acetyl-L-cysteine,N-Acetylcysteine,NAC AL,NAC Zambon,Optipect Hustengetränk,Siccoral,Siran,Solmucol,acebraus,durabronchal,mentopin Acetylcystein,Acetylcystein, mentopin,Acid, Mercapturic,Broncho Fips,BronchoFips,Hustengetränk, Optipect,Hydrochloride, Acetylcysteine,M Pectil,MPectil,Monoammonium Salt Acetylcysteine,Monosodium Salt Acetylcysteine,Mucopect, Dampo,N Acetyl L cysteine,N Acetylcysteine,NAC, Bisolvon,Sanigen, Muco,Sodium, Acetylcysteine,Zambon, NAC,Zinc, Acetylcysteine

Related Publications

A Meyer, and R Buhl, and H Magnussen
January 2017, The Lancet. Respiratory medicine,
A Meyer, and R Buhl, and H Magnussen
January 1997, Burns : journal of the International Society for Burn Injuries,
A Meyer, and R Buhl, and H Magnussen
June 1991, Medizinische Klinik (Munich, Germany : 1983),
A Meyer, and R Buhl, and H Magnussen
September 2005, Respirology (Carlton, Vic.),
A Meyer, and R Buhl, and H Magnussen
November 2005, The New England journal of medicine,
A Meyer, and R Buhl, and H Magnussen
March 2006, Proceedings of the National Academy of Sciences of the United States of America,
A Meyer, and R Buhl, and H Magnussen
November 2009, American journal of physiology. Lung cellular and molecular physiology,
A Meyer, and R Buhl, and H Magnussen
January 2010, Internal medicine (Tokyo, Japan),
A Meyer, and R Buhl, and H Magnussen
May 2014, The New England journal of medicine,
Copied contents to your clipboard!