Functional neuroanatomy of the human brain: positron emission tomography--a new neuroanatomical technique. 1994

R S Frackowiak, and K J Friston
MRC Cyclotron Unit, Hammersmith Hospital, London, UK.

Positron emission tomography (PET) is a noninvasive radiotracer-based technique which increasingly is being applied to describe the functional anatomy of the human brain in life. It is a technically sophisticated approach to perfusion mapping, and is predicated on the fact that increases and decreases of synaptic activity in the brain are accompanied by appropriate and equivalent changes in local glucose consumption and perfusion (Raichle, 1987; Mata et al. 1980; Fox and Raichle, 1986). The achievable, practical resolution of the scans presently approximates 6 x 6 x 6 mm, which is sufficient to identify focal perfusion changes as little as 2 mm apart if sequential bloodflow maps are compared and hence to permit analysis of functional activation in the brain at the level of maps, networks and systems. It is theoretically possible that technical advances will one day allow some resolution at a cortical modular level. The tracer of perfusion most commonly used is water, labelled with radioactive, positron-emitting oxygen (15O), which has a short 2.1 min half-life. There is some interest in using 15O labelled butanol which has, in theory, certain possible advantages over water as a perfusion tracer. 15O-water can be used to record up to 12 estimations of the distribution of cerebral perfusion at one sitting in normal subjects and is very easy to use. The resultant radiation dose is very small, safe and within international guidelines for the use of radioactivity for research in normal human volunteers (5 mSv).

UI MeSH Term Description Entries
D010104 Oxygen Radioisotopes Unstable isotopes of oxygen that decay or disintegrate emitting radiation. O atoms with atomic weights 13, 14, 15, 19, and 20 are radioactive oxygen isotopes. Radioisotopes, Oxygen
D012039 Regional Blood Flow The flow of BLOOD through or around an organ or region of the body. Blood Flow, Regional,Blood Flows, Regional,Flow, Regional Blood,Flows, Regional Blood,Regional Blood Flows
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D014055 Tomography, Emission-Computed Tomography using radioactive emissions from injected RADIONUCLIDES and computer ALGORITHMS to reconstruct an image. CAT Scan, Radionuclide,CT Scan, Radionuclide,Computerized Emission Tomography,Radionuclide Tomography, Computed,Scintigraphy, Computed Tomographic,Tomography, Radionuclide-Computed,Computed Tomographic Scintigraphy,Emission-Computed Tomography,Radionuclide Computer-Assisted Tomography,Radionuclide Computerized Tomography,Radionuclide-Computed Tomography,Radionuclide-Emission Computed Tomography,Tomography, Computerized Emission,CAT Scans, Radionuclide,CT Scans, Radionuclide,Computed Radionuclide Tomography,Computed Tomography, Radionuclide-Emission,Computer-Assisted Tomographies, Radionuclide,Computer-Assisted Tomography, Radionuclide,Computerized Tomography, Radionuclide,Emission Computed Tomography,Emission Tomography, Computerized,Radionuclide CAT Scan,Radionuclide CAT Scans,Radionuclide CT Scan,Radionuclide CT Scans,Radionuclide Computed Tomography,Radionuclide Computer Assisted Tomography,Radionuclide Computer-Assisted Tomographies,Radionuclide Emission Computed Tomography,Scan, Radionuclide CAT,Scan, Radionuclide CT,Scans, Radionuclide CAT,Scans, Radionuclide CT,Tomographic Scintigraphy, Computed,Tomographies, Radionuclide Computer-Assisted,Tomography, Computed Radionuclide,Tomography, Emission Computed,Tomography, Radionuclide Computed,Tomography, Radionuclide Computer-Assisted,Tomography, Radionuclide Computerized,Tomography, Radionuclide-Emission Computed

Related Publications

R S Frackowiak, and K J Friston
March 1998, [Hokkaido igaku zasshi] The Hokkaido journal of medical science,
R S Frackowiak, and K J Friston
October 2000, Microscopy research and technique,
R S Frackowiak, and K J Friston
June 1991, Bulletin de l'Association des anatomistes,
R S Frackowiak, and K J Friston
March 2000, The International journal of eating disorders,
R S Frackowiak, and K J Friston
October 1987, Annals of neurology,
R S Frackowiak, and K J Friston
February 1992, Brain : a journal of neurology,
R S Frackowiak, and K J Friston
January 1995, Proceedings of the National Academy of Sciences of the United States of America,
R S Frackowiak, and K J Friston
December 1989, Seminars in neurology,
Copied contents to your clipboard!