Blockade of nitric oxide synthesis inhibits hippocampal hyperemia in kainic acid-induced seizures. 1994

A S Rigaud-Monnet, and E Pinard, and J Borredon, and J Seylaz
Laboratoire de Recherches Cérébrovasculaires, Université Paris VII, France.

We investigated whether the nitric oxide (NO) synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME) affects the cerebrovascular changes occurring in seizures induced by kainic acid (KA) in awake, spontaneously breathing rats. Blood flow and tissue PO2 and PCO2 were continuously and simultaneously measured by mass spectrometry from a cannula chronically implanted into the dorsal hippocampus, L-NAME (20 mg/kg; n = 8) or saline (n = 9) was administered i.p. 30 min prior to i.p. KA (10 mg/kg) injection. L-NAME significantly decreased hippocampal blood flow and PO2 and increased mean arterial blood pressure (MABP). In L-NAME-treated rats, seizure activity occurred about 10 min sooner than in control rats, and status epilepticus was inevitably followed by a flat electroencephalogram and sudden death. In contrast, control rats survival KA-induced seizures. Hippocampal blood flow was significantly less elevated during the seizures in L-NAME-treated rats than in control rats (maximal levels, 170 and 450%, respectively, of baseline values), though MABP remained significantly higher. Hippocampal PO2 was significantly decreased at all times after KA injection in L-NAME-treated rats, whereas it remained at or above normoxic levels in control rats. The present results show that L-NAME markedly attenuates the hippocampal blood flow and tissue PO2 changes in response to enhanced metabolic activity due to limbic seizures and suggest that NO is of major importance in cerebral blood flow control during KA-induced seizures.

UI MeSH Term Description Entries
D007608 Kainic Acid (2S-(2 alpha,3 beta,4 beta))-2-Carboxy-4-(1-methylethenyl)-3-pyrrolidineacetic acid. Ascaricide obtained from the red alga Digenea simplex. It is a potent excitatory amino acid agonist at some types of excitatory amino acid receptors and has been used to discriminate among receptor types. Like many excitatory amino acid agonists it can cause neurotoxicity and has been used experimentally for that purpose. Digenic Acid,Kainate,Acid, Digenic,Acid, Kainic
D008297 Male Males
D009569 Nitric Oxide A free radical gas produced endogenously by a variety of mammalian cells, synthesized from ARGININE by NITRIC OXIDE SYNTHASE. Nitric oxide is one of the ENDOTHELIUM-DEPENDENT RELAXING FACTORS released by the vascular endothelium and mediates VASODILATION. It also inhibits platelet aggregation, induces disaggregation of aggregated platelets, and inhibits platelet adhesion to the vascular endothelium. Nitric oxide activates cytosolic GUANYLATE CYCLASE and thus elevates intracellular levels of CYCLIC GMP. Endogenous Nitrate Vasodilator,Mononitrogen Monoxide,Nitric Oxide, Endothelium-Derived,Nitrogen Monoxide,Endothelium-Derived Nitric Oxide,Monoxide, Mononitrogen,Monoxide, Nitrogen,Nitrate Vasodilator, Endogenous,Nitric Oxide, Endothelium Derived,Oxide, Nitric,Vasodilator, Endogenous Nitrate
D001831 Body Temperature The measure of the level of heat of a human or animal. Organ Temperature,Body Temperatures,Organ Temperatures,Temperature, Body,Temperature, Organ,Temperatures, Body,Temperatures, Organ
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D002560 Cerebrovascular Circulation The circulation of blood through the BLOOD VESSELS of the BRAIN. Brain Blood Flow,Regional Cerebral Blood Flow,Cerebral Blood Flow,Cerebral Circulation,Cerebral Perfusion Pressure,Circulation, Cerebrovascular,Blood Flow, Brain,Blood Flow, Cerebral,Brain Blood Flows,Cerebral Blood Flows,Cerebral Circulations,Cerebral Perfusion Pressures,Circulation, Cerebral,Flow, Brain Blood,Flow, Cerebral Blood,Perfusion Pressure, Cerebral,Pressure, Cerebral Perfusion
D004569 Electroencephalography Recording of electric currents developed in the brain by means of electrodes applied to the scalp, to the surface of the brain, or placed within the substance of the brain. EEG,Electroencephalogram,Electroencephalograms
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D006940 Hyperemia The presence of an increased amount of blood in a body part or an organ leading to congestion or engorgement of blood vessels. Hyperemia can be due to increase of blood flow into the area (active or arterial), or due to obstruction of outflow of blood from the area (passive or venous). Active Hyperemia,Arterial Hyperemia,Passive Hyperemia,Reactive Hyperemia,Venous Congestion,Venous Engorgement,Congestion, Venous,Engorgement, Venous,Hyperemia, Active,Hyperemia, Arterial,Hyperemia, Passive,Hyperemia, Reactive,Hyperemias,Hyperemias, Reactive,Reactive Hyperemias
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

A S Rigaud-Monnet, and E Pinard, and J Borredon, and J Seylaz
April 2004, Brain & development,
A S Rigaud-Monnet, and E Pinard, and J Borredon, and J Seylaz
May 2001, Brain research,
A S Rigaud-Monnet, and E Pinard, and J Borredon, and J Seylaz
April 2001, Brain research,
A S Rigaud-Monnet, and E Pinard, and J Borredon, and J Seylaz
June 2018, Molecular brain,
A S Rigaud-Monnet, and E Pinard, and J Borredon, and J Seylaz
May 1995, Brain research,
A S Rigaud-Monnet, and E Pinard, and J Borredon, and J Seylaz
February 2008, The journal of physiological sciences : JPS,
A S Rigaud-Monnet, and E Pinard, and J Borredon, and J Seylaz
January 1994, Peptides,
A S Rigaud-Monnet, and E Pinard, and J Borredon, and J Seylaz
January 2001, Neuroscience letters,
A S Rigaud-Monnet, and E Pinard, and J Borredon, and J Seylaz
June 2002, Pediatrics international : official journal of the Japan Pediatric Society,
A S Rigaud-Monnet, and E Pinard, and J Borredon, and J Seylaz
January 2016, eNeuro,
Copied contents to your clipboard!