Human neutrophil degranulation responses to nucleotides. 1994

J T O'Flaherty, and J F Cordes
Department of Medicine, Bowman Gray School of Medicine, Winston-Salem, North Carolina.

BACKGROUND Nucleotides have polymorphonuclear neutrophil (PMN)-stimulating actions resembling those of 5-hydroxyicosatetraenoate and its oxo analog, 5-oxoETE. Their effects on degranulation, however, are disputed even though this response may underlie their in vivo toxicity and is well-suited for comparing their mechanism of action with e.g., 5-oxoETE. METHODS We measured the direct, synergistic, and cross-desensitizing actions of nine nucleotides and six other stimuli in degranulating unprimed and tumor necrosis factor (TNF)-alpha-primed human PMN. RESULTS Nucleotides weakly degranulated unprimed PMN but caused far larger responses in TNF-alpha-primed cells. Their actions, while differing from those of N-formyl-MET-LEU-PHE, platelet-activating factor, leukotriene B4, ionomycin, or dioctanoylglycerol, resembled those of 5-oxoETE. Nucleotides also enhanced PMN degranulation responses to the latter stimuli, particularly 5-oxoETE. Nucleotide degranulating and enhancing potencies were: UTP > or = ATP > or = ATP gamma S > ITP > ADP > 2-MeSATP, nonphosphohydrolyzable analogs lacked activity, and adenosine and AMP blocked PMN degranulation. Finally, nucleotides desensitized degranulation responses to each other but not to 5-oxoETE or other agonists, and 5-oxoETE desensitized to itself but not to nucleotides. CONCLUSIONS Nucleotides have intrinsic and synergistic degranulating actions that under appropriate conditions (i.e., in concert with TNF-alpha or 5-oxoETE) are exceedingly prominent. Recognition systems mediating their effects differ from those for various stimuli including 5-oxoETE. These systems likely involve a common "nucleotide" receptor, but studies do not exclude possibilities that other purinergic receptors contribute to their actions.

UI MeSH Term Description Entries
D007975 Leukotriene B4 The major metabolite in neutrophil polymorphonuclear leukocytes. It stimulates polymorphonuclear cell function (degranulation, formation of oxygen-centered free radicals, arachidonic acid release, and metabolism). (From Dictionary of Prostaglandins and Related Compounds, 1990) 5,12-HETE,5,12-diHETE,LTB4,Leukotriene B,Leukotriene B-4,Leukotrienes B,5,12 HETE,5,12 diHETE,B-4, Leukotriene,Leukotriene B 4
D009240 N-Formylmethionine Leucyl-Phenylalanine A formylated tripeptide originally isolated from bacterial filtrates that is positively chemotactic to polymorphonuclear leucocytes, and causes them to release lysosomal enzymes and become metabolically activated. F-Met-Leu-Phe,N-Formyl-Methionyl-Leucyl-Phenylalanine,Formylmet-Leu-Phe,Formylmethionyl Peptide,Formylmethionyl-Leucyl-Phenylalanine,Formylmethionylleucylphenylalanine,N-Formylated Peptide,N-formylmethionyl-leucyl-phenylalanine,fMet-Leu-Phe,F Met Leu Phe,Formylmet Leu Phe,Formylmethionyl Leucyl Phenylalanine,Leucyl-Phenylalanine, N-Formylmethionine,N Formyl Methionyl Leucyl Phenylalanine,N Formylated Peptide,N Formylmethionine Leucyl Phenylalanine,N formylmethionyl leucyl phenylalanine,Peptide, Formylmethionyl,Peptide, N-Formylated,fMet Leu Phe
D009504 Neutrophils Granular leukocytes having a nucleus with three to five lobes connected by slender threads of chromatin, and cytoplasm containing fine inconspicuous granules and stainable by neutral dyes. LE Cells,Leukocytes, Polymorphonuclear,Polymorphonuclear Leukocytes,Polymorphonuclear Neutrophils,Neutrophil Band Cells,Band Cell, Neutrophil,Cell, LE,LE Cell,Leukocyte, Polymorphonuclear,Neutrophil,Neutrophil Band Cell,Neutrophil, Polymorphonuclear,Polymorphonuclear Leukocyte,Polymorphonuclear Neutrophil
D010972 Platelet Activating Factor A phospholipid derivative formed by PLATELETS; BASOPHILS; NEUTROPHILS; MONOCYTES; and MACROPHAGES. It is a potent platelet aggregating agent and inducer of systemic anaphylactic symptoms, including HYPOTENSION; THROMBOCYTOPENIA; NEUTROPENIA; and BRONCHOCONSTRICTION. AGEPC,Acetyl Glyceryl Ether Phosphorylcholine,PAF-Acether,Phosphorylcholine, Acetyl Glyceryl Ether,1-Alkyl-2-acetyl-sn-glycerophosphocholine,Platelet Aggregating Factor,Platelet Aggregation Enhancing Factor,Platelet-Activating Substance,Thrombocyte Aggregating Activity,1 Alkyl 2 acetyl sn glycerophosphocholine,Aggregating Factor, Platelet,Factor, Platelet Activating,PAF Acether,Platelet Activating Substance
D003594 Cytoplasmic Granules Condensed areas of cellular material that may be bounded by a membrane. Cytoplasmic Granule,Granule, Cytoplasmic,Granules, Cytoplasmic
D004075 Diglycerides Glycerides composed of two fatty acids esterified to the trihydric alcohol GLYCEROL. There are two possible forms that exist: 1,2-diacylglycerols and 1,3-diacylglycerols. Diacylglycerol,Diacylglycerols
D004357 Drug Synergism The action of a drug in promoting or enhancing the effectiveness of another drug. Drug Potentiation,Drug Augmentation,Augmentation, Drug,Augmentations, Drug,Drug Augmentations,Drug Potentiations,Drug Synergisms,Potentiation, Drug,Potentiations, Drug,Synergism, Drug,Synergisms, Drug
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000227 Adenine Nucleotides Adenine Nucleotide,Adenosine Phosphate,Adenosine Phosphates,Nucleotide, Adenine,Nucleotides, Adenine,Phosphate, Adenosine,Phosphates, Adenosine
D000241 Adenosine A nucleoside that is composed of ADENINE and D-RIBOSE. Adenosine or adenosine derivatives play many important biological roles in addition to being components of DNA and RNA. Adenosine itself is a neurotransmitter. Adenocard,Adenoscan

Related Publications

J T O'Flaherty, and J F Cordes
January 2019, Methods in molecular biology (Clifton, N.J.),
J T O'Flaherty, and J F Cordes
January 1988, Methods in enzymology,
J T O'Flaherty, and J F Cordes
August 1984, Biochemical and biophysical research communications,
J T O'Flaherty, and J F Cordes
January 1987, Blood,
J T O'Flaherty, and J F Cordes
January 1984, Contemporary topics in immunobiology,
J T O'Flaherty, and J F Cordes
June 1983, Research communications in chemical pathology and pharmacology,
J T O'Flaherty, and J F Cordes
January 1988, International archives of allergy and applied immunology,
J T O'Flaherty, and J F Cordes
February 1990, Journal of leukocyte biology,
J T O'Flaherty, and J F Cordes
January 1984, Research communications in chemical pathology and pharmacology,
J T O'Flaherty, and J F Cordes
January 2004, Medical hypotheses,
Copied contents to your clipboard!