Effect of altered contractility on the linearity of regional left ventricular end-systolic relations in intact hearts. 1994

W P Miller
Section of Cardiology, University of Wisconsin School of Medicine.

The purpose of these studies was to determine the effect of altered regional contractility on the linearity of regional left ventricular end-systolic relations. Significant change in the shape of these relations would limit their application as load-independent indices of regional contractility. In a paced, open-chest pig heart preparation (n = 7), the left ventricular end-systolic pressure-segment length relation (ESPLR) and pressure-wall thickness relation (ESPTR) were obtained over a wide range of end-systolic pressures (134 +/- 9 to 70 +/- 6 mm Hg). Regional inotropic state was varied with intracoronary calcium and verapamil. The shapes of the ESPLR and ESPTR were characterized by using linear and quadratic models. Both provided a good fit, although the quadratic model showed a slight concavity to the segment length and thickness axes (second-order coefficient < 0). In the linear model, calcium increased the slope of the ESPLR by 111% (p < 0.01) and the slope of the ESPTR by 170% (p < 0.01). At a pressure of 100 mm Hg, end-systolic segment length (L100) shifted to the left (p < 0.05) and end-systolic wall thickness (T100) to the right (p < 0.025). Verapamil decreased the slope of the ESPLR by 45% (p < 0.01) and of the ESPTR by 33% (p not significant) and produced significant shifts in L100 (p < 0.001) and T100 (p < 0.025). The values of L100 and T100 determined by the quadratic fit were nearly identical to those for the linear fit, and both showed similar significant shifts with altered contractility. There was no significant change in the shape of the quadratic fit (as assessed by the second-order coefficient) with different contractile states. It is concluded that the curvilinearity of the ESPLR and ESPTR under physiologic conditions is slight and appears to be independent of the contractile state. Furthermore, a linear model of regional end-systolic relations can be used to assess regional left ventricular function in intact hearts.

UI MeSH Term Description Entries
D008297 Male Males
D009200 Myocardial Contraction Contractile activity of the MYOCARDIUM. Heart Contractility,Inotropism, Cardiac,Cardiac Inotropism,Cardiac Inotropisms,Contractilities, Heart,Contractility, Heart,Contraction, Myocardial,Contractions, Myocardial,Heart Contractilities,Inotropisms, Cardiac,Myocardial Contractions
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D003326 Coronary Circulation The circulation of blood through the CORONARY VESSELS of the HEART. Circulation, Coronary
D003331 Coronary Vessels The veins and arteries of the HEART. Coronary Arteries,Sinus Node Artery,Coronary Veins,Arteries, Coronary,Arteries, Sinus Node,Artery, Coronary,Artery, Sinus Node,Coronary Artery,Coronary Vein,Coronary Vessel,Sinus Node Arteries,Vein, Coronary,Veins, Coronary,Vessel, Coronary,Vessels, Coronary
D004452 Echocardiography Ultrasonic recording of the size, motion, and composition of the heart and surrounding tissues. The standard approach is transthoracic. Echocardiography, Contrast,Echocardiography, Cross-Sectional,Echocardiography, M-Mode,Echocardiography, Transthoracic,Echocardiography, Two-Dimensional,Transthoracic Echocardiography,2-D Echocardiography,2D Echocardiography,Contrast Echocardiography,Cross-Sectional Echocardiography,Echocardiography, 2-D,Echocardiography, 2D,M-Mode Echocardiography,Two-Dimensional Echocardiography,2 D Echocardiography,Cross Sectional Echocardiography,Echocardiography, 2 D,Echocardiography, Cross Sectional,Echocardiography, M Mode,Echocardiography, Two Dimensional,M Mode Echocardiography,Two Dimensional Echocardiography
D004562 Electrocardiography Recording of the moment-to-moment electromotive forces of the HEART as projected onto various sites on the body's surface, delineated as a scalar function of time. The recording is monitored by a tracing on slow moving chart paper or by observing it on a cardioscope, which is a CATHODE RAY TUBE DISPLAY. 12-Lead ECG,12-Lead EKG,12-Lead Electrocardiography,Cardiography,ECG,EKG,Electrocardiogram,Electrocardiograph,12 Lead ECG,12 Lead EKG,12 Lead Electrocardiography,12-Lead ECGs,12-Lead EKGs,12-Lead Electrocardiographies,Cardiographies,ECG, 12-Lead,EKG, 12-Lead,Electrocardiograms,Electrocardiographies, 12-Lead,Electrocardiographs,Electrocardiography, 12-Lead

Related Publications

W P Miller
August 1972, Revista medica de Chile,
Copied contents to your clipboard!