Distribution and functional significance of Leu-callatostatins in the blowfly Calliphora vomitoria. 1994

H Duve, and A Thorpe
School of Biological Sciences, Queen Mary and Westfield College, University of London, UK.

The Leu-callatostatins are a series of four neuropeptides isolated from nervous tissues of the blowfly Calliphora vomitoria that show C-terminal sequence homology to the allatostatins of cockroaches. The allatostatins have an important role in the reproductive processes of insects as inhibitors of the synthesis and release of juvenile hormone from the corpus allatum. In this study, the distribution of the Leu-callatostatin-immunoreactive neurones and endocrine cells has been mapped in C. vomitoria and, in contrast to the cockroach allatostatins, it has been shown that there is no cytological basis to suggest that the dipteran peptides act as regulators of juvenile hormone. Although occurring in various neurones in the brain and thoracico-abdominal ganglion, there is no evidence of Leu-callatostatin-immunoreactive pathways linking the brain to the corpus allatum, or of immunoreactive terminals in this gland. Three different types of functions for the Leu-callatostatins are suggested by the occurrence of immunoreactive material in cells and by the pathways that have been identified. (1) A role in neurotransmission or neuromodulation appears evident from immunoreactive neurones in the medulla of the optic lobes, and from immunoreactive material in the central body and in descending interneurones in the suboesophageal ganglion that project to the neuropile of the thoracico-abdominal ganglion. (2) Leu-callatostatin neurones directly innervate muscles of the hindgut and the heart. Immunoreactive fibres from neurones of the abdominal ganglion pass by way of the median abdominal nerve to ramify extensively over several areas of the hindgut. Physiological experiments with synthetic peptides show that the Leu-callatostatins are potent inhibitors of peristaltic movements of the ileum. Leu-callatostatin 3 is active at 10(-16) to 10(-13) M. This form of regulatory control over gut motility appears to be highly specific since the patterns of contraction in other regions are unaffected by these peptides. (3) Evidence that the Leu-callatostatins act as neurohormones comes from the presence of varicosities in axons passing through the corpus cardiacum (but not the corpus allatum) and also from material in extraganglionic neurosecretory cells in the thorax. Fibres from these peripheral neurones are especially prominent over the large nerve bundles supplying the legs. There are also a considerable number of Leu-callatostatin-immunoreactive endocrine cells in a specific region of the midgut. The conclusion from this study is that although conservation of the structure of the allatostatin-type of peptides is evident through a long period of evolution it cannot be assumed that all of their functions have also been conserved.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D007422 Intestines The section of the alimentary canal from the STOMACH to the ANAL CANAL. It includes the LARGE INTESTINE and SMALL INTESTINE. Intestine
D007605 Juvenile Hormones Compounds, either natural or synthetic, which block development of the growing insect. Insect Growth Regulator,Insect Growth Regulators,Juvenile Hormone,Growth Regulators, Insect,Regulators, Insect Growth,Growth Regulator, Insect,Hormone, Juvenile,Hormones, Juvenile,Regulator, Insect Growth
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D009420 Nervous System The entire nerve apparatus, composed of a central part, the brain and spinal cord, and a peripheral part, the cranial and spinal nerves, autonomic ganglia, and plexuses. (Stedman, 26th ed) Nervous Systems,System, Nervous,Systems, Nervous
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009479 Neuropeptides Peptides released by NEURONS as intercellular messengers. Many neuropeptides are also hormones released by non-neuronal cells. Neuropeptide
D004175 Diptera An order of the class Insecta. Wings, when present, number two and distinguish Diptera from other so-called flies, while the halteres, or reduced hindwings, separate Diptera from other insects with one pair of wings. The order includes the families Calliphoridae, Oestridae, Phoridae, SARCOPHAGIDAE, Scatophagidae, Sciaridae, SIMULIIDAE, Tabanidae, Therevidae, Trypetidae, CERATOPOGONIDAE; CHIRONOMIDAE; CULICIDAE; DROSOPHILIDAE; GLOSSINIDAE; MUSCIDAE; TEPHRITIDAE; and PSYCHODIDAE. The larval form of Diptera species are called maggots (see LARVA). Flies, True,Flies,Dipteras,Fly,Fly, True,True Flies,True Fly
D005260 Female Females
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein

Related Publications

H Duve, and A Thorpe
August 1975, The Journal of experimental biology,
H Duve, and A Thorpe
October 1980, Journal of comparative and physiological psychology,
H Duve, and A Thorpe
January 2012, Tsitologiia,
Copied contents to your clipboard!