The asiA gene product of bacteriophage T4 is required for middle mode RNA synthesis. 1994

M Ouhammouch, and G Orsini, and E N Brody
Department of Biological Sciences, State University of New York at Buffalo 14260.

The asiA gene of bacteriophage T4 encodes a 10-kDa peptide which binds strongly in vitro to the sigma 70 subunit of Escherichia coli RNA polymerase, thereby weakening sigma 70-core interactions and inhibiting sigma 70-dependent transcription. To assess the physiological role of this protein, we have introduced an amber mutation into the proximal portion of the asiA gene. On suppressor-deficient hosts, this mutant phage (amS22) produces minute plaques and exhibits a pronounced delay in phage production. During these mutant infections, T4 DNA synthesis is strongly delayed, suggesting that the AsiA protein plays an important role during the prereplicative period of phage T4 development. The kinetics of protein synthesis show clearly that while T4 early proteins are synthesized normally, those expressed primarily via the middle mode exhibit a marked inhibition. In fact, the pattern of protein synthesis after amS22 infection resembles greatly that seen after infection by amG1, an amber mutant in motA, a T4 gene whose product is known to control middle mode RNA synthesis. The amber mutations in the motA and asiA genes complement, both for phage growth and for normal kinetics of middle mode protein synthesis. Furthermore, primer extension analyses show that three different MotA-dependent T4 middle promoters are not recognized after infection by the asiA mutant phage. Thus, in conjunction with the MotA protein, the AsiA protein is required for transcription activation at T4 middle mode promoters.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D005814 Genes, Viral The functional hereditary units of VIRUSES. Viral Genes,Gene, Viral,Viral Gene
D005816 Genetic Complementation Test A test used to determine whether or not complementation (compensation in the form of dominance) will occur in a cell with a given mutant phenotype when another mutant genome, encoding the same mutant phenotype, is introduced into that cell. Allelism Test,Cis Test,Cis-Trans Test,Complementation Test,Trans Test,Allelism Tests,Cis Tests,Cis Trans Test,Cis-Trans Tests,Complementation Test, Genetic,Complementation Tests,Complementation Tests, Genetic,Genetic Complementation Tests,Trans Tests
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012321 DNA-Directed RNA Polymerases Enzymes that catalyze DNA template-directed extension of the 3'-end of an RNA strand one nucleotide at a time. They can initiate a chain de novo. In eukaryotes, three forms of the enzyme have been distinguished on the basis of sensitivity to alpha-amanitin, and the type of RNA synthesized. (From Enzyme Nomenclature, 1992). DNA-Dependent RNA Polymerases,RNA Polymerases,Transcriptases,DNA-Directed RNA Polymerase,RNA Polymerase,Transcriptase,DNA Dependent RNA Polymerases,DNA Directed RNA Polymerase,DNA Directed RNA Polymerases,Polymerase, DNA-Directed RNA,Polymerase, RNA,Polymerases, DNA-Dependent RNA,Polymerases, DNA-Directed RNA,Polymerases, RNA,RNA Polymerase, DNA-Directed,RNA Polymerases, DNA-Dependent,RNA Polymerases, DNA-Directed
D012367 RNA, Viral Ribonucleic acid that makes up the genetic material of viruses. Viral RNA
D012808 Sigma Factor A protein which is a subunit of RNA polymerase. It effects initiation of specific RNA chains from DNA. Sigma Element,Sigma Initiation Factor,Sigma Subunit,Minor Sigma Factor,RNA Polymerase Sigma Factor H,Factor, Sigma,Factor, Sigma Initiation,Initiation Factor, Sigma,Sigma Factor, Minor,Subunit, Sigma
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor

Related Publications

M Ouhammouch, and G Orsini, and E N Brody
October 1982, The Journal of biological chemistry,
M Ouhammouch, and G Orsini, and E N Brody
February 1982, Virology,
M Ouhammouch, and G Orsini, and E N Brody
May 1969, Journal of molecular biology,
M Ouhammouch, and G Orsini, and E N Brody
December 1982, Virology,
M Ouhammouch, and G Orsini, and E N Brody
May 1976, Journal of molecular biology,
M Ouhammouch, and G Orsini, and E N Brody
May 1998, Journal of molecular biology,
M Ouhammouch, and G Orsini, and E N Brody
August 1977, Proceedings of the National Academy of Sciences of the United States of America,
M Ouhammouch, and G Orsini, and E N Brody
October 1989, The New biologist,
M Ouhammouch, and G Orsini, and E N Brody
November 2009, Molecular microbiology,
Copied contents to your clipboard!