A locus involved in the regulation of replication in plasmid pSC101. 1994

D Manen, and G Xia, and L Caro
Department of Molecular Biology, University of Geneva, Switzerland.

The origin of replication of plasmid pSC101 contains three directly repeated sequences RS1, RS2, and RS3 separated by 22 bp from two palindromic sequences, IR1 and IR2, which are partially homologous to the direct repeats. These inverted repeat (IR) sequences overlap the promoter of the repA gene which encodes a protein essential for plasmid replication. We have shown that RepA binds to the RS sites as a monomer and to the IR sites as a dimer. The influence of the IR1 site, and of the DNA segment that separates it from RS3, on plasmid copy number control has been studied in detail. We show that the integrity of IR1 is essential for efficient replication and plasmid stability, the critical site extending to the left of IR1 proper. We also show that the presence of IR1 modifies profoundly the binding properties of purified RepA protein to a segment of DNA containing the RS sequences. IR1 is separated from its homologous site on RS3 by approximately four turns of the DNA helix. Replication is abolished if this distance is increased by half a turn of the helix but it is restored if the distance is increased by a whole turn. These results suggest a DNA looping interaction, in the initiation of replication, between the RepA dimer that binds IR1 and the RepA monomers that bind the RS sequences.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D012091 Repetitive Sequences, Nucleic Acid Sequences of DNA or RNA that occur in multiple copies. There are several types: INTERSPERSED REPETITIVE SEQUENCES are copies of transposable elements (DNA TRANSPOSABLE ELEMENTS or RETROELEMENTS) dispersed throughout the genome. TERMINAL REPEAT SEQUENCES flank both ends of another sequence, for example, the long terminal repeats (LTRs) on RETROVIRUSES. Variations may be direct repeats, those occurring in the same direction, or inverted repeats, those opposite to each other in direction. TANDEM REPEAT SEQUENCES are copies which lie adjacent to each other, direct or inverted (INVERTED REPEAT SEQUENCES). DNA Repetitious Region,Direct Repeat,Genes, Selfish,Nucleic Acid Repetitive Sequences,Repetitive Region,Selfish DNA,Selfish Genes,DNA, Selfish,Repetitious Region, DNA,Repetitive Sequence,DNA Repetitious Regions,DNAs, Selfish,Direct Repeats,Gene, Selfish,Repeat, Direct,Repeats, Direct,Repetitious Regions, DNA,Repetitive Regions,Repetitive Sequences,Selfish DNAs,Selfish Gene
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D016296 Mutagenesis Process of generating a genetic MUTATION. It may occur spontaneously or be induced by MUTAGENS. Mutageneses

Related Publications

D Manen, and G Xia, and L Caro
February 1991, Molecular microbiology,
D Manen, and G Xia, and L Caro
January 1985, Molecular & general genetics : MGG,
D Manen, and G Xia, and L Caro
January 1984, Advances in experimental medicine and biology,
D Manen, and G Xia, and L Caro
September 1993, Journal of bacteriology,
D Manen, and G Xia, and L Caro
October 1984, Journal of bacteriology,
D Manen, and G Xia, and L Caro
December 1989, Journal of bacteriology,
D Manen, and G Xia, and L Caro
September 1979, Molecular & general genetics : MGG,
D Manen, and G Xia, and L Caro
October 1983, Journal of molecular biology,
Copied contents to your clipboard!