A DNA-binding activity, TRAC, specific for the TRA element of the transferrin receptor gene copurifies with the Ku autoantigen. 1994

M R Roberts, and Y Han, and A Fienberg, and L Hunihan, and F H Ruddle
Department of Biology, Yale University, New Haven, CT 06511.

We have previously described purification and characterization of a nuclear protein, TREF, which interacts specifically with the transcriptional control element, TRA, of the human transferrin receptor (TR) gene. In this report we show that TREF can be separated into two functionally distinct DNA-binding activities. The first DNA-binding activity (TRAC) is highly specific for the 8-bp element TRA and the related Escherichia coli cAMP receptor binding site. This motif is homologous to the phorbol 12-tetradecanoate 13-acetate- and cAMP-responsive elements of eukaryotic genes and the regulatory proximal sequence elements of the U1 small nuclear RNA gene and is also present in the promoter of the Drosophila melanogaster yolk protein factor 1 gene. In striking contrast, the second activity exhibits high affinity for the ends of double-stranded DNA in a sequence-unspecific manner and is attributable to the heterodimeric Ku autoantigen. Notably, transcription of Ku is induced during mid-late G0/G1 with kinetics similar to the TR gene. Ku is a highly abundant nuclear protein possessing nonspecific affinity for the ends of DNA, whose biological role remains to be elucidated. A transcriptional role for this protein has been proposed, however, on the basis of studies attributing DNA sequence-specific binding activity, notably for TRA-like sequences described above, directly to the Ku heterodimer. The observation that Ku-mediated nonspecific DNA-binding activity copurifies with the TRA-specific activity, TRAC, clearly has implications for these and related studies. The unusual properties of TRAC activity and its relationship, if any, with the enigmatic Ku protein, are discussed.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009687 Nuclear Proteins Proteins found in the nucleus of a cell. Do not confuse with NUCLEOPROTEINS which are proteins conjugated with nucleic acids, that are not necessarily present in the nucleus. Nucleolar Protein,Nucleolar Proteins,Nuclear Protein,Protein, Nuclear,Protein, Nucleolar,Proteins, Nuclear,Proteins, Nucleolar
D011990 Receptors, Transferrin Membrane glycoproteins found in high concentrations on iron-utilizing cells. They specifically bind iron-bearing transferrin, are endocytosed with its ligand and then returned to the cell surface where transferrin without its iron is released. Transferrin Receptors,Transferrin Receptor,Receptor, Transferrin
D002846 Chromatography, Affinity A chromatographic technique that utilizes the ability of biological molecules, often ANTIBODIES, to bind to certain ligands specifically and reversibly. It is used in protein biochemistry. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Chromatography, Bioaffinity,Immunochromatography,Affinity Chromatography,Bioaffinity Chromatography
D002852 Chromatography, Ion Exchange Separation technique in which the stationary phase consists of ion exchange resins. The resins contain loosely held small ions that easily exchange places with other small ions of like charge present in solutions washed over the resins. Chromatography, Ion-Exchange,Ion-Exchange Chromatography,Chromatographies, Ion Exchange,Chromatographies, Ion-Exchange,Ion Exchange Chromatographies,Ion Exchange Chromatography,Ion-Exchange Chromatographies
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004265 DNA Helicases Proteins that catalyze the unwinding of duplex DNA during replication by binding cooperatively to single-stranded regions of DNA or to short regions of duplex DNA that are undergoing transient opening. In addition, DNA helicases are DNA-dependent ATPases that harness the free energy of ATP hydrolysis to translocate DNA strands. ATP-Dependent DNA Helicase,DNA Helicase,DNA Unwinding Protein,DNA Unwinding Proteins,ATP-Dependent DNA Helicases,DNA Helicase A,DNA Helicase E,DNA Helicase II,DNA Helicase III,ATP Dependent DNA Helicase,ATP Dependent DNA Helicases,DNA Helicase, ATP-Dependent,DNA Helicases, ATP-Dependent,Helicase, ATP-Dependent DNA,Helicase, DNA,Helicases, ATP-Dependent DNA,Helicases, DNA,Protein, DNA Unwinding,Unwinding Protein, DNA,Unwinding Proteins, DNA
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs

Related Publications

M R Roberts, and Y Han, and A Fienberg, and L Hunihan, and F H Ruddle
August 1998, The Journal of biological chemistry,
M R Roberts, and Y Han, and A Fienberg, and L Hunihan, and F H Ruddle
January 2000, Critical reviews in biochemistry and molecular biology,
M R Roberts, and Y Han, and A Fienberg, and L Hunihan, and F H Ruddle
March 1996, Nature,
M R Roberts, and Y Han, and A Fienberg, and L Hunihan, and F H Ruddle
June 1995, The Journal of biological chemistry,
M R Roberts, and Y Han, and A Fienberg, and L Hunihan, and F H Ruddle
February 1997, The Journal of biological chemistry,
M R Roberts, and Y Han, and A Fienberg, and L Hunihan, and F H Ruddle
October 1990, The Journal of clinical investigation,
M R Roberts, and Y Han, and A Fienberg, and L Hunihan, and F H Ruddle
November 1994, Journal of cell science,
M R Roberts, and Y Han, and A Fienberg, and L Hunihan, and F H Ruddle
January 1989, Proceedings of the National Academy of Sciences of the United States of America,
M R Roberts, and Y Han, and A Fienberg, and L Hunihan, and F H Ruddle
September 1999, Molecular and cellular biology,
M R Roberts, and Y Han, and A Fienberg, and L Hunihan, and F H Ruddle
February 1991, The Journal of biological chemistry,
Copied contents to your clipboard!