[The specificity of modulation of sarcoplasmic reticulum Ca(2+)-ATPase by transmembrane Ca2+ gradient]. 1993

Y P Tu, and H Xu, and F Y Yang
National Laboratory of Biomacromolecules, Institute of Biophysics, Academia Sinica, Beijing, China.

We have previously reported that transmembrane Ca2+ gradient-mediated changes in lipid fluidity could modulate the conformation and enzyme activity of sarcoplasmic reticulum (SR) Ca(2+)-ATPase. The aim of this paper is to explore the specificity of transmembrane Ca2+ gradient-mediated modulation of SR Ca(2+)-ATPase. The results showed that such specificity exhibited in two aspects: 1. The modulation could not be ascribed to transmembrane potential resulted from the transmembrane Ca2+ gradient, Dissipation of transmembrane potential by FCCP (carbonylcyanide-p-trifluoromethoxyphenylhydrazone) could not affect the activity of SR Ca(2+)-ATPase. 2. Transmembrane Sr2+ gradient had little effect on the enzyme activity of SR Ca(2+)-ATPase. A significant difference between the effect of transmembrane Ca2+ and Sr2+ gradient on the lipid fluidity was detected in the middle region of bilayer of Ca(2+)-ATPase incorporated proteoliposomes using a set of n-AS [n-(9-anthroyloxy) fatty acids] fluorescence polarization probes. It is known that Ca2+ binding domain of SR Ca(2+)-ATPase is just located in the middle region of bilayer, hence it may be deduced that possibly, membrane lipids are involved in transmembrane Ca2+ gradient-mediated modulation of Ca(2+)-ATPase.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002259 Carbonyl Cyanide p-Trifluoromethoxyphenylhydrazone A proton ionophore that is commonly used as an uncoupling agent in biochemical studies. Carbonyl Cyanide para-Trifluoromethoxyphenylhydrazone,FCCP,(4-(Trifluoromethoxy)phenyl)hydrazonopropanedinitrile,Carbonyl Cyanide p Trifluoromethoxyphenylhydrazone,Carbonyl Cyanide para Trifluoromethoxyphenylhydrazone,Cyanide p-Trifluoromethoxyphenylhydrazone, Carbonyl,Cyanide para-Trifluoromethoxyphenylhydrazone, Carbonyl,p-Trifluoromethoxyphenylhydrazone, Carbonyl Cyanide,para-Trifluoromethoxyphenylhydrazone, Carbonyl Cyanide
D000001 Calcimycin An ionophorous, polyether antibiotic from Streptomyces chartreusensis. It binds and transports CALCIUM and other divalent cations across membranes and uncouples oxidative phosphorylation while inhibiting ATPase of rat liver mitochondria. The substance is used mostly as a biochemical tool to study the role of divalent cations in various biological systems. 4-Benzoxazolecarboxylic acid, 5-(methylamino)-2-((3,9,11-trimethyl-8-(1-methyl-2-oxo-2-(1H-pyrrol-2-yl)ethyl)-1,7-dioxaspiro(5.5)undec-2-yl)methyl)-, (6S-(6alpha(2S*,3S*),8beta(R*),9beta,11alpha))-,A-23187,A23187,Antibiotic A23187,A 23187,A23187, Antibiotic
D000252 Calcium-Transporting ATPases Cation-transporting proteins that utilize the energy of ATP hydrolysis for the transport of CALCIUM. They differ from CALCIUM CHANNELS which allow calcium to pass through a membrane without the use of energy. ATPase, Calcium,Adenosinetriphosphatase, Calcium,Ca(2+)-Transporting ATPase,Calcium ATPase,Calcium Adenosinetriphosphatase,Adenosine Triphosphatase, Calcium,Ca2+ ATPase,Calcium-ATPase,ATPase, Ca2+,ATPases, Calcium-Transporting,Calcium Adenosine Triphosphatase,Calcium Transporting ATPases,Triphosphatase, Calcium Adenosine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012519 Sarcoplasmic Reticulum A network of tubules and sacs in the cytoplasm of SKELETAL MUSCLE FIBERS that assist with muscle contraction and relaxation by releasing and storing calcium ions. Reticulum, Sarcoplasmic,Reticulums, Sarcoplasmic,Sarcoplasmic Reticulums
D013324 Strontium An element of the alkaline earth family of metals. It has the atomic symbol Sr, atomic number 38, and atomic weight 87.62.

Related Publications

Y P Tu, and H Xu, and F Y Yang
October 1993, Biochemical and biophysical research communications,
Y P Tu, and H Xu, and F Y Yang
December 1992, Seikagaku. The Journal of Japanese Biochemical Society,
Y P Tu, and H Xu, and F Y Yang
February 1990, Biochimica et biophysica acta,
Y P Tu, and H Xu, and F Y Yang
January 1988, Methods in enzymology,
Y P Tu, and H Xu, and F Y Yang
January 1988, Progress in clinical and biological research,
Y P Tu, and H Xu, and F Y Yang
September 1994, The Journal of biological chemistry,
Y P Tu, and H Xu, and F Y Yang
August 2006, Journal of biotechnology,
Y P Tu, and H Xu, and F Y Yang
January 1998, Trends in cardiovascular medicine,
Y P Tu, and H Xu, and F Y Yang
July 2016, FEBS letters,
Copied contents to your clipboard!