Ozone-induced release of cytokines and fibronectin by alveolar macrophages and airway epithelial cells. 1994

R B Devlin, and K P McKinnon, and T Noah, and S Becker, and H S Koren
Health Effects Research Laboratory, United States Environmental Protection Agency, Research Triangle Park 27711.

Acute exposure of animals and humans to ozone results in decrements in lung function, development of airway hyperreactivity, inflammation, edema, damage to pulmonary cells, and production of several compounds with tissue damaging, fibrinogenic or fibrotic potential. The contribution of airway epithelial cells and alveolar macrophages to these processes is unclear. In this study we have directly exposed human alveolar macrophages and human airway epithelial cells to ozone in vitro and measured the cytotoxic effects of ozone, as well as the production of the inflammatory cytokines interleukin-6 (IL-6) and interleukin-8 (IL-8), and fibronectin, all of which are substantially elevated in the bronchoalveolar lavage fluid of humans exposed to ozone. Cells were grown on rigid, collagen-impregnated filter supports, and the interaction of cells with ozone facilitated by exposing them to the gas with medium below the support but no medium on top of the cells. The results show that, although macrophages are much more sensitive to ozone than epithelial cells, they do not produce increased amounts of IL-6, IL-8, or fibronectin following ozone exposure. In contrast, epithelial cells produce substantially more of all three proteins following ozone exposure, and both IL-6 and fibronectin are secreted vectorially. An immortalized human airway epithelial cell line (BEAS 2B) was used in these experiments since human airway epithelial cells are infrequently available for in vitro studies. Data from this study extend previous findings which suggest that the BEAS cell line is a useful model to study the interaction between airway epithelial cells and environmental toxicants.

UI MeSH Term Description Entries
D008168 Lung Either of the pair of organs occupying the cavity of the thorax that effect the aeration of the blood. Lungs
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D010126 Ozone The unstable triatomic form of oxygen, O3. It is a powerful oxidant that is produced for various chemical and industrial uses. Its production is also catalyzed in the ATMOSPHERE by ULTRAVIOLET RAY irradiation of oxygen or other ozone precursors such as VOLATILE ORGANIC COMPOUNDS and NITROGEN OXIDES. About 90% of the ozone in the atmosphere exists in the stratosphere (STRATOSPHERIC OZONE). Ground Level Ozone,Low Level Ozone,Tropospheric Ozone,Level Ozone, Ground,Level Ozone, Low,Ozone, Ground Level,Ozone, Low Level,Ozone, Tropospheric
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D005353 Fibronectins Glycoproteins found on the surfaces of cells, particularly in fibrillar structures. The proteins are lost or reduced when these cells undergo viral or chemical transformation. They are highly susceptible to proteolysis and are substrates for activated blood coagulation factor VIII. The forms present in plasma are called cold-insoluble globulins. Cold-Insoluble Globulins,LETS Proteins,Fibronectin,Opsonic Glycoprotein,Opsonic alpha(2)SB Glycoprotein,alpha 2-Surface Binding Glycoprotein,Cold Insoluble Globulins,Globulins, Cold-Insoluble,Glycoprotein, Opsonic,Proteins, LETS,alpha 2 Surface Binding Glycoprotein
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults
D015850 Interleukin-6 A cytokine that stimulates the growth and differentiation of B-LYMPHOCYTES and is also a growth factor for HYBRIDOMAS and plasmacytomas. It is produced by many different cells including T-LYMPHOCYTES; MONOCYTES; and FIBROBLASTS. Hepatocyte-Stimulating Factor,Hybridoma Growth Factor,IL-6,MGI-2,Myeloid Differentiation-Inducing Protein,Plasmacytoma Growth Factor,B Cell Stimulatory Factor-2,B-Cell Differentiation Factor,B-Cell Differentiation Factor-2,B-Cell Stimulatory Factor 2,B-Cell Stimulatory Factor-2,BSF-2,Differentiation Factor, B-Cell,Differentiation Factor-2, B-Cell,IFN-beta 2,IL6,Interferon beta-2,B Cell Differentiation Factor,B Cell Differentiation Factor 2,B Cell Stimulatory Factor 2,Differentiation Factor 2, B Cell,Differentiation Factor, B Cell,Differentiation-Inducing Protein, Myeloid,Growth Factor, Hybridoma,Growth Factor, Plasmacytoma,Hepatocyte Stimulating Factor,Interferon beta 2,Interleukin 6,Myeloid Differentiation Inducing Protein,beta-2, Interferon
D016207 Cytokines Non-antibody proteins secreted by inflammatory leukocytes and some non-leukocytic cells, that act as intercellular mediators. They differ from classical hormones in that they are produced by a number of tissue or cell types rather than by specialized glands. They generally act locally in a paracrine or autocrine rather than endocrine manner. Cytokine
D016209 Interleukin-8 A member of the CXC chemokine family that plays a role in the regulation of the acute inflammatory response. It is secreted by variety of cell types and induces CHEMOTAXIS of NEUTROPHILS and other inflammatory cells. CXCL8 Chemokine,Chemokine CXCL8,Chemotactic Factor, Macrophage-Derived,Chemotactic Factor, Neutrophil, Monocyte-Derived,IL-8,Neutrophil-Activating Peptide, Lymphocyte-Derived,Neutrophil-Activating Peptide, Monocyte-Derived,AMCF-I,Alveolar Macrophage Chemotactic Factor-I,Anionic Neutrophil-Activating Peptide,Chemokines, CXCL8,Chemotactic Factor, Neutrophil,Granulocyte Chemotactic Peptide-Interleukin-8,IL8,Monocyte-Derived Neutrophil Chemotactic Factor,Neutrophil Activation Factor,Alveolar Macrophage Chemotactic Factor I,Anionic Neutrophil Activating Peptide,CXCL8 Chemokines,CXCL8, Chemokine,Chemokine, CXCL8,Chemotactic Factor, Macrophage Derived,Chemotactic Peptide-Interleukin-8, Granulocyte,Granulocyte Chemotactic Peptide Interleukin 8,Interleukin 8,Lymphocyte-Derived Neutrophil-Activating Peptide,Macrophage-Derived Chemotactic Factor,Monocyte-Derived Neutrophil-Activating Peptide,Neutrophil Activating Peptide, Lymphocyte Derived,Neutrophil Activating Peptide, Monocyte Derived,Neutrophil Chemotactic Factor,Neutrophil-Activating Peptide, Anionic,Peptide, Anionic Neutrophil-Activating

Related Publications

R B Devlin, and K P McKinnon, and T Noah, and S Becker, and H S Koren
October 1996, Clinical and experimental immunology,
R B Devlin, and K P McKinnon, and T Noah, and S Becker, and H S Koren
November 1994, Investigative ophthalmology & visual science,
R B Devlin, and K P McKinnon, and T Noah, and S Becker, and H S Koren
July 1995, American journal of respiratory cell and molecular biology,
R B Devlin, and K P McKinnon, and T Noah, and S Becker, and H S Koren
June 2010, Free radical biology & medicine,
R B Devlin, and K P McKinnon, and T Noah, and S Becker, and H S Koren
December 1995, The American journal of physiology,
R B Devlin, and K P McKinnon, and T Noah, and S Becker, and H S Koren
June 1989, Environmental research,
R B Devlin, and K P McKinnon, and T Noah, and S Becker, and H S Koren
January 2002, Inflammation research : official journal of the European Histamine Research Society ... [et al.],
R B Devlin, and K P McKinnon, and T Noah, and S Becker, and H S Koren
April 2024, bioRxiv : the preprint server for biology,
R B Devlin, and K P McKinnon, and T Noah, and S Becker, and H S Koren
October 2020, Zhongguo yi xue ke xue yuan xue bao. Acta Academiae Medicinae Sinicae,
R B Devlin, and K P McKinnon, and T Noah, and S Becker, and H S Koren
August 1982, Environmental research,
Copied contents to your clipboard!