Analysis of responses to bradykinin and influence of HOE 140 in the isolated perfused rat lung. 1994

B D Nossaman, and C J Feng, and P J Kadowitz
Department of Anesthesiology, Tulane University Medical School, New Orleans, Louisiana 70112-2699.

The inhibitory effects of HOE 140, a novel bradykinin B2 receptor antagonist, on pulmonary vascular and airway responses to bradykinin (BK) were investigated under conditions of controlled pulmonary blood flow and ventilation and constant left atrial pressure in the isolated blood-perfused rat lung. Under baseline conditions, BK produced dose-related increases in pulmonary arterial perfusion pressure without changing airway pressure. However, when pulmonary arterial pressure was raised to a high steady level, increases in pulmonary arterial pressure in response to BK were enhanced and BK then produced dose-related increases in airway pressure. Responses to BK were reproducible with respect to time and were not different when the inspired fraction of O2 was 0.21 or 0.95 and HOE 140 was 0.8 nM/ml (50 micrograms/kg) and decreased both pulmonary vascular and airway responses to the peptide. HOE 140 had no significant effect on pulmonary vascular responses to angiotensin II, serotonin, nitric oxide, sodium nitroprusside, albuterol, or pinacidil. Additionally, in these experiments, HOE 140 had no effect on the pulmonary arterial pressor response to ventilatory hypoxia. These results suggest BK has significant vasoconstrictor and bronchoconstrictor effects that are mediated by B2 receptors and are dependent on the baseline level of tone in the airways and in the pulmonary vascular bed. The present results suggest that HOE 140 is a highly selective, BK B2 receptor antagonist in the pulmonary vascular bed of the rat. These data also suggest that HOE 140 may be a useful probe for studying the role of BK in the pulmonary vascular bed in physiological and pathophysiological conditions.

UI MeSH Term Description Entries
D008168 Lung Either of the pair of organs occupying the cavity of the thorax that effect the aeration of the blood. Lungs
D008297 Male Males
D008469 Meclofenamic Acid A non-steroidal anti-inflammatory agent with antipyretic and antigranulation activities. It also inhibits prostaglandin biosynthesis. Benzoic acid, 2-((2,6-dichloro-3-methylphenyl)amino)-, monosodium salt, monohydrate,Meclofenamate,Meclofenamate Sodium,Meclofenamate Sodium Anhydrous,Meclofenamate Sodium Monohydrate,Meclomen,Sodium Meclofenamate,Meclofenamate, Sodium
D010100 Oxygen An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration. Dioxygen,Oxygen-16,Oxygen 16
D010477 Perfusion Treatment process involving the injection of fluid into an organ or tissue. Perfusions
D011450 Prostaglandin Endoperoxides, Synthetic Synthetic compounds that are analogs of the naturally occurring prostaglandin endoperoxides and that mimic their pharmacologic and physiologic activities. They are usually more stable than the naturally occurring compounds. Prostaglandin Endoperoxide Analogs,Prostaglandin Endoperoxide Analogues,Synthetic Prostaglandin Endoperoxides,Analogues, Prostaglandin Endoperoxide,Endoperoxide Analogues, Prostaglandin,Endoperoxides, Synthetic Prostaglandin
D011651 Pulmonary Artery The short wide vessel arising from the conus arteriosus of the right ventricle and conveying unaerated blood to the lungs. Arteries, Pulmonary,Artery, Pulmonary,Pulmonary Arteries
D012119 Respiration The act of breathing with the LUNGS, consisting of INHALATION, or the taking into the lungs of the ambient air, and of EXHALATION, or the expelling of the modified air which contains more CARBON DIOXIDE than the air taken in (Blakiston's Gould Medical Dictionary, 4th ed.). This does not include tissue respiration ( Breathing
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic
D001920 Bradykinin A nonapeptide messenger that is enzymatically produced from KALLIDIN in the blood where it is a potent but short-lived agent of arteriolar dilation and increased capillary permeability. Bradykinin is also released from MAST CELLS during asthma attacks, from gut walls as a gastrointestinal vasodilator, from damaged tissues as a pain signal, and may be a neurotransmitter. Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg,Bradykinin Acetate, (9-D-Arg)-Isomer,Bradykinin Diacetate,Bradykinin Hydrochloride,Bradykinin Triacetate,Bradykinin, (1-D-Arg)-Isomer,Bradykinin, (2-D-Pro)-Isomer,Bradykinin, (2-D-Pro-3-D-Pro-7-D-Pro)-Isomer,Bradykinin, (2-D-Pro-7-D-Pro)-Isomer,Bradykinin, (3-D-Pro)-Isomer,Bradykinin, (3-D-Pro-7-D-Pro)-Isomer,Bradykinin, (5-D-Phe)-Isomer,Bradykinin, (5-D-Phe-8-D-Phe)-Isomer,Bradykinin, (6-D-Ser)-Isomer,Bradykinin, (7-D-Pro)-Isomer,Bradykinin, (8-D-Phe)-Isomer,Bradykinin, (9-D-Arg)-Isomer,Arg Pro Pro Gly Phe Ser Pro Phe Arg

Related Publications

B D Nossaman, and C J Feng, and P J Kadowitz
August 1994, The American journal of physiology,
B D Nossaman, and C J Feng, and P J Kadowitz
January 1992, European journal of pharmacology,
B D Nossaman, and C J Feng, and P J Kadowitz
January 1993, British journal of pharmacology,
B D Nossaman, and C J Feng, and P J Kadowitz
May 1993, European journal of pharmacology,
B D Nossaman, and C J Feng, and P J Kadowitz
April 1993, European journal of pharmacology,
B D Nossaman, and C J Feng, and P J Kadowitz
October 1992, British journal of pharmacology,
B D Nossaman, and C J Feng, and P J Kadowitz
January 1992, Agents and actions. Supplements,
B D Nossaman, and C J Feng, and P J Kadowitz
June 1996, International journal of andrology,
Copied contents to your clipboard!