Effect of paraquat on the malondialdehyde level in rat liver microsomes (in vitro). 1994

M Tomita, and T Okuyama
Department of Legal Medicine, Kawasaki Medical School, Kurashiki, Japan.

Toxicosis due to paraquat, a redox cycling xenobiotic, is still a subject of much debate. In the present study on lipid peroxidation, paraquat had a biphasic effect on the malondialdehyde (MDA) level in rat liver microsomes; stimulation at the initial stage (within 10 min) and depression at the later stage. Although paraquat increased the initial rate of NADPH oxidation dose-dependently, the rate was not necessarily parallel with the increase in the MDA level. The MDA level increased linearly up to 0.1 mM paraquat added, but then it attained a plateau. The stimulation obtained by paraquat within 10 min was absolutely dependent on exogenous Fe2+ ion and NADPH, and the stimulation was entirely SOD sensitive, while the iron-driven increase in MDA was 20% sensitive. Thus, there were different mechanisms between iron-driven lipid peroxidation and paraquat-modified peroxidation. Catalase increased the level, but mannitol, a scavenger of OH, had no effect. EPR spectra showed that superoxide was formed dose-dependently up to 0.1 mM paraquat and that it attained a plateau at the same as MDA level described above. From these results, we concluded that paraquat stimulates lipid peroxidation through a mechanism dependent on the superoxide complex involving Fe2+ ion.

UI MeSH Term Description Entries
D008297 Male Males
D008315 Malondialdehyde The dialdehyde of malonic acid. Malonaldehyde,Propanedial,Malonylaldehyde,Malonyldialdehyde,Sodium Malondialdehyde,Malondialdehyde, Sodium
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D009249 NADP Nicotinamide adenine dinucleotide phosphate. A coenzyme composed of ribosylnicotinamide 5'-phosphate (NMN) coupled by pyrophosphate linkage to the 5'-phosphate adenosine 2',5'-bisphosphate. It serves as an electron carrier in a number of reactions, being alternately oxidized (NADP+) and reduced (NADPH). (Dorland, 27th ed) Coenzyme II,Nicotinamide-Adenine Dinucleotide Phosphate,Triphosphopyridine Nucleotide,NADPH,Dinucleotide Phosphate, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide Phosphate,Nucleotide, Triphosphopyridine,Phosphate, Nicotinamide-Adenine Dinucleotide
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010269 Paraquat A poisonous dipyridilium compound used as contact herbicide. Contact with concentrated solutions causes irritation of the skin, cracking and shedding of the nails, and delayed healing of cuts and wounds. Methyl Viologen,Gramoxone,Paragreen A,Viologen, Methyl
D004578 Electron Spin Resonance Spectroscopy A technique applicable to the wide variety of substances which exhibit paramagnetism because of the magnetic moments of unpaired electrons. The spectra are useful for detection and identification, for determination of electron structure, for study of interactions between molecules, and for measurement of nuclear spins and moments. (From McGraw-Hill Encyclopedia of Science and Technology, 7th edition) Electron nuclear double resonance (ENDOR) spectroscopy is a variant of the technique which can give enhanced resolution. Electron spin resonance analysis can now be used in vivo, including imaging applications such as MAGNETIC RESONANCE IMAGING. ENDOR,Electron Nuclear Double Resonance,Electron Paramagnetic Resonance,Paramagnetic Resonance,Electron Spin Resonance,Paramagnetic Resonance, Electron,Resonance, Electron Paramagnetic,Resonance, Electron Spin,Resonance, Paramagnetic
D005290 Ferric Compounds Inorganic or organic compounds containing trivalent iron. Compounds, Ferric
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013482 Superoxide Dismutase An oxidoreductase that catalyzes the reaction between SUPEROXIDES and hydrogen to yield molecular oxygen and hydrogen peroxide. The enzyme protects the cell against dangerous levels of superoxide. Hemocuprein,Ag-Zn Superoxide Dismutase,Cobalt Superoxide Dismutase,Cu-Superoxide Dismutase,Erythrocuprein,Fe-Superoxide Dismutase,Fe-Zn Superoxide Dismutase,Iron Superoxide Dismutase,Manganese Superoxide Dismutase,Mn-SOD,Mn-Superoxide Dismutase,Ag Zn Superoxide Dismutase,Cu Superoxide Dismutase,Dismutase, Ag-Zn Superoxide,Dismutase, Cobalt Superoxide,Dismutase, Cu-Superoxide,Dismutase, Fe-Superoxide,Dismutase, Fe-Zn Superoxide,Dismutase, Iron Superoxide,Dismutase, Manganese Superoxide,Dismutase, Mn-Superoxide,Dismutase, Superoxide,Fe Superoxide Dismutase,Fe Zn Superoxide Dismutase,Mn SOD,Mn Superoxide Dismutase,Superoxide Dismutase, Ag-Zn,Superoxide Dismutase, Cobalt,Superoxide Dismutase, Fe-Zn,Superoxide Dismutase, Iron,Superoxide Dismutase, Manganese

Related Publications

M Tomita, and T Okuyama
December 1989, Hiroshima journal of medical sciences,
M Tomita, and T Okuyama
March 1963, Archives internationales de physiologie et de biochimie,
M Tomita, and T Okuyama
September 1984, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
M Tomita, and T Okuyama
December 1964, Biochemical pharmacology,
M Tomita, and T Okuyama
February 2010, Clinical toxicology (Philadelphia, Pa.),
M Tomita, and T Okuyama
July 2003, Bulletin of experimental biology and medicine,
M Tomita, and T Okuyama
January 1986, Acta physiologica et pharmacologica Bulgarica,
M Tomita, and T Okuyama
May 1998, Alcoholism, clinical and experimental research,
Copied contents to your clipboard!